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Abstract

Growth curve modeling is a popular methodological tool due to its flexi-

bility in simultaneously analyzing both within-person effects (e.g., assessing

change over time for one person) and between-person effects (e.g., comparing

differences in the change trajectories across people). This paper is a prac-

tical exposure to fitting growth curve models in the hierarchical Bayesian

framework. First the mathematical formulation of growth curve models is

provided. Then we give step-by-step guidelines on how to fit these models

in the hierarchical Bayesian framework with corresponding computer scripts

(JAGS and R). To illustrate the Bayesian GCM approach, we analyze a data

set from a longitudinal study of marital relationship quality. We provide our

computer code and example data set so that the reader can have hands-on

experience fitting the growth curve model.

We advocate using the Bayesian statistical framework (see. e.g., Gelman, Carlin, Stern, & Rubin,

2013; Kruschke, 2015; McElreath, 2016) for fitting growth curve models. Bayesian methods provide flexible

tools to fit GCMs with various levels of complexity. We will show that by using generic Bayesian software
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programs, such as JAGS (see e.g., Plummer et al., 2003), a variety of simple and complex growth curve

models can be implemented in a straightforward manner. One unique strength of Bayesian modeling is

that results can be interpreted in an intuitive and direct way by summarizing the posterior distribution

of the parameters. The posterior distribution can be described in terms of the likely range of parameters,

and is derived based on the data without depending on hypothetical data or on the data collection plan.

Moreover, prior knowledge on the likely values of the parameters can be included in the Bayesian framework,

providing a principled approach to accumulating and incorporating scientific knowledge.

This paper introduces a basic growth curve model, provides a detailed description with computer

code for fitting the model, and gives guidelines on how to incorporate further extensions for particular

research questions. We published our computer code and example data set, described below, in a Git

repository - available for the user via this link: https://git.psu.edu/zzo1/FittingGCMBayesian - to provide

hands-on experience with model fitting.

To demonstrate the advantages of the Bayesian approach to GCM, we analyze a data set from a

longitudinal study of marital relationship quality, measured across the transition to parenthood, described

in Belsky and Rovine (1990). We are interested in studying how a father’s feelings of marital love change

in conjunction with the birth of his first child. We will show how to describe each father’s change in

experiencing marital love as a function of time (the love trajectory), beginning at 3 months before the

birth of his first child. Moreover, to study the moderating effect of the fathers’ overall positivity towards

marriage, we will group fathers according to their number of positive experiences in marriage up to 3

months before birth.

Our illustration of the Bayesian GCM approach is based on a longitudinal marital love study (N =

106), with 4 measurements per subject (father). The measurements aim to capture levels of marital love,

quantified via self-reports on the Braiker and Kelley (1979) 9-point 10-item love subscale (see more details

on the scales in the study description). Measurements were first drawn at 3 months before the first child’s

birth, then at 3 months, 9 months and 36 months after childbirth. Each father’s individual love trajectory

is shown in Figure 1. Data are grouped into three categories (low, medium, high positivity) based on a

father’s total number of positive experiences that occurred between marriage and 3 months before birth

of their first child, measured by a 45-item checklist of positive events (e.g., job promotion, birth of family

https://git.psu.edu/zzo1/FittingGCMBayesian
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member; or reverse coded ones such as job loss, death of family member, etc.). The categories were created

with equal number of subjects in each group. Note that the main purpose of this categorical binning is

demonstrative, and including positivity as a continuous predictor would retain more information on the

original measure. The visualization in Figure 1 provides multifaceted observation of overall trends, group

trends, and how widely individual trajectories vary.

25

50

75

−3 3 6 36
Months (Baby Was Born)

M
ar

ita
l L

ov
e

Low Positivity Group

25

50

75

−3 3 6 36
Months (Baby Was Born)

M
ar

ita
l L

ov
e

Medium Positivity Group

25

50

75

−3 3 6 36
Months (Baby Was Born)

M
ar

ita
l L

ov
e

High Positivity Group

Figure 1. Individual trajectories of father’s love scores across measurement occasions; group corresponds to the
fathers’ level of positivity (1=low, 2=medium, or 3=high number of positive life events post-marriage at first mea-
sure).

Specification of the linear growth curve model

A typical longitudinal data set contains T measurements at occasions t (t = 1, . . . , T ) from an

individual i, where i = (1, . . . , N), with N indicating the total number of people in the sample. The exact

measurement time points can vary and need not be fixed across people; however, this tutorial considers fixed

time points across people. The number of measurement occasions (T) can also vary among participants,

as the model flexibly handles various forms of missingness. The simplest assumption behind missingness

is that it is unrelated to the modeled phenomenon, that is “missing completely at random” (MCAR, see

in Little, 1995). If this is reasonable to assume, R users need no further action, since missing values

are automatically coded as “NA ” (”not available”), and will be automatically dealt with in proposed

Bayesian engine or can be completely eliminated from the data (see in discussion on long format later

with corresponding computer script). If MCAR does not apply, the missingness mechanism should also be
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included in the model.

The measure of love by father i at measurement occasion t is denoted by Yi,t. In a simple growth

curve model, we can express the change within-person over measurement occasions in terms of intercept

(initial level) and slope (rate of change) parameters. That is, we are fitting a straight line to each father’s

4 measurements, with x-axis (independent variable) being the time, and y-axis (dependent variable) being

the love measure. We can specify this GCM as follows:

Yi,t ∼ N(βi,1 + βi,2Tt, σ
2
eLevel1

) (1)

βi,1 ∼ N(µβ1 , σ
2
eβ1

) (2)

βi,2 ∼ N(µβ2 , σ
2
eβ2

). (3)

In all three lines above, N stands for the normal (Gaussian) distribution. We specify the normal distribution

in terms of mean and variance parameters. The tilde (∼) symbolizes “distributed as”, indicating that the

parameters on the left hand side are assumed to follow the normal distributional form.

Equation 1 captures the effect of time at the person level, therefore it is often referred to as the

level-1 equation. This specifies the likelihood function. In Equation 1, the mean of our observed data Yi,t

is a function of a person i’s intercept parameter β1,i and the product between person i’s slope parameter

and the measurement occasion Tt at t, this way providing the conditional distribution of Yi,t given β1,i

and β2,i. The distributional shape of Equation 1 is chosen to be Gaussian, with the time-specific residuals

having variance σ2eLevel1 . This allows for there to be error relative to the predicted person-specific change,

with larger deviations becoming exponentially less likely. Note that the σ2eLevel1 term could be modified to

account for autocorrelation in the residual variation by adding an extra parameter to directly model this

autocorrelation, and account for the time-dependency in the mean and variance structure captured by this

parameter. Interested readers can consult the Git repository mentioned above for a worked out example.

1

In contrast to our level-1 equation, Equations 2 and 3 are level-2, or population- (group) level equa-

tions, which capture between-person variability in initial levels (intercepts) and rates of change (slopes).

1See RAnalysisACerror.R file.
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In Equation 2 parameter µβ1 is called the population mean or level-2 mean, and is a group parameter

shared across participants. The variance term σ2eβ1
is the level-2 variation of the intercepts, representing

the magnitude of the individual differences in initial values. Equation 3 describes the population level

distribution of the slope parameters βi,2: it has the shape of the normal distribution with µβ2 capturing

the population mean slope and σ2eβ2
representing the individual differences in rates of change. Later we

will explicitly model the covariation between intercept and slope parameters. However, it is important to

note that if we kept independent univariate priors on βi,1 and βi,2 they could still co-vary in the posterior

distribution.

Properties

As opposed to fitting a separate regression equation for each person’s data, an important aspect of

hierarchically modeling intercepts and slopes is that the level-2 or hyperprior distributions pool information

across subjects. In other words, a person’s intercept and slope estimates are drawn from both individual-

and population- (group) level information. This partial pooling is not particular to the Bayesian framework,

nor does it happen only in the GCM: it is a general characteristic of hierarchical/multilevel modeling. To

clarify, a completely pooled estimate would mean estimating only one intercept parameter and one slope

parameter, which is the same for every person. A completely unpooled estimate would mean fitting

a regression line separately for each individual’s data over time. The person-level and population-level

estimates in the GCM compromise between these two extremes: person-specific estimates are pooled

towards group means, causing “shrinkage” towards the more general, population-level trend. That is to

say that the person and population-level estimates share information: each individual’s data contribute to

the population mean, which in turn informs the person-specific terms.

Shrinkage of person-level intercept and slope estimates is a desirable attribute of multilevel modeling.

Often within-person measurements are noisy, and we have fewer observation from some individuals than

from others. Borrowing information from the whole group (from all data available) helps reduce the random

sampling noise in person-specific estimates. Note that although the population trend constrains person-level

estimates, person-level estimates are still pulled towards the individual’s data. For the GCM in particular,

it is interesting to highlight that even if we had one (or a few) participant(s) with only one observation, we
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could still estimate their person-specific intercept and person-specific slope parameters. Moreover in the

Bayesian GCM these person-specific intercept and slope parameters have posterior distributions, which

quantify uncertainty around these estimates. Also, it turns out that Bayesian hierarchical modeling can

provide relatively low uncertainty in these kinds of posterior estimates (for a worked example see Kruschke,

2015, Chapter 17).

Finally, we would like to emphasize the advantages of implementing these hierarchical models in

the Bayesian framework in terms of accuracy of the estimates. Consider estimating the variation in

person-specific intercept or slope parameters; that is in population level variances representing individual

differences. Often these variance components have a lot of uncertainty due to the fact that they capture

variation in latent, person-specific constructs, which are themselves estimated with uncertainty. In Bayesian

parameter estimation we integrate over the uncertainty in all the parameter values: that is to say that the

posterior uncertainty of the latent, person-specific constructs influences the posterior uncertainty in the

population level constructs and vice versa.

Specification of the linear GCM with a grouping variable

To examine individual variation in initial levels and rates of change, Equations 2 and 3 can be

extended in several ways. In our application to the marital love study, we add a grouping factor based

on fathers’ levels of positivity. As stated in the introduction, we test whether fathers’ baseline marital

positivity - that is, the positivity fathers experienced in marriage, up until 3 months before the birth of

their first child - can explain how their feelings of love towards their partner change post birth. Fathers

were grouped into low, medium, and high positivity categories, based on self-reported numbers of positive

events they had experienced at marriage to date (these reports were provided during the first measurement

occasion, -3 months). We use fathers who scored medium positivity as our baseline group, and estimate

level-2 intercept and slope parameters for this group. We model low and high positivity groups in terms

of their deviations from medium positivity baseline. Compared to Equations 2 and 3, the GCM with

grouping factors extensions (specified below) has additional components for interpretation, namely, group

parameters with categorical, comparative estimates.

Whether a person belongs to a low or high positivity group will be coded by two dichotomous (dummy
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coded) 0-1 variables: Xi,1 has value 1 for person i, if that person belongs to the low positivity group, while

Xi,2 has value 1 for person i, if that person belongs to the high positivity group. Persons belonging to the

medium positivity group will have 0-s for both Xi,1 and Xi,2. To clarify, these X-s represent individual

level, time-invariant predictors. Our new level-2 equations extend Equations 2 and 3 with these systematic

group level variations as follows:

βi,1 ∼ N(µMedPInt + βlowPIntXi,1 + βhighPIntXi,2, σ
2
eβ1

) (4)

βi,2 ∼ N(µMedPSlope + βlowPSlopeXi,1 + βhighPSlopeXi,2, σ
2
eβ2

). (5)

As in Equations 2 and 3, intercept (βi,1) and slope (βi,1) parameters are person-specific, and therefore

account for individual differences within groups. Parameters µMedPInt and µMedPSlope capture baseline

intercept (initial value) and slope (rate of change) values for the medium level positivity group in our

example. Regression coefficient βlowPInt represents systematic deviations from baseline initial values

(intercept for medium positivity group) in the low positivity group, while βhighPInt captures these for the

high positivity group. Parameter βlowPSlope represents deviations from the baseline rate of change (slope

for the medium positivity group) in the low positivity group, while βhighPSlope captures these for the

high positivity group. The likelihood specification, that is Equation 1, is not repeated here as it remains

the same.

In Equations 4 and 5 we specified level-2 distributions on intercepts and slopes univarietly. How-

ever, traditionally these terms are allowed to co-vary. To have a more complete correspondence with the

original GCM models we can also formulate the distribution of the person-specific intercepts and slopes

bivariately. That is to say that we set a bivariate normal population (Level-2) hyperprior distribution on

these parameters:

 βi,1

βi,2

 ∼ N2


 µMedPInt + βlowPIntXi,1 + βhighPIntXi,2

µMedPSlope + βlowPSlopeXi,1 + βhighPSlopeXi,2

 ,
 σ2eβ1

σeβ12

σeβ21 σ2eβ2


 . (6)

This mean vector of the bivariate distribution in Equation 6 is a function of regression coefficients and

predictors just like in Equations 4 and 5. Variation around the bivariate mean is expressed in terms of
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a covariance matrix. The elements of this matrix are σeβ12 , which expresses covariation between person-

specific intercepts and slopes, and σ2eβ1
and σ2eβ2

, which represent the variances of these terms. Dividing

the covariance with the product of the standard deviation gives us the population-level correlation between

intercepts and slopes.

Prior specification

Now we specify prior distributions for all model parameters: normal distributions with mean zero

and reasonably high variation for the group means for intercept and slope. The specification below is

interpreted as setting a diffuse prior distribution on a wide range of possible values the parameter can take.

Since we know that marital love was measured on a 9-point scale with 10 items, we use this knowledge to

make sure we make the prior wide enough to fully cover the plausible range of the data. This corresponds

to minimally informative priors on the baseline values (medium positivity group) and on the group-specific

regression terms. The priors could be made even more diffuse, but this would negligibly differ from the

chosen prior in its impact on the posterior. We specified the following normal priors, parameterized in

terms of mean and variances:

µMedPInt ∼ N(0, 100)

µMedPSlope ∼ N(0, 100)

βlowPInt ∼ N(0, 100)

βhighPInt ∼ N(0, 100)

βlowPSlope ∼ N(0, 100)

βhighPSlope ∼ N(0, 100).

We set standard non-informative uniform distributions over a set of possible values for the error term, the

standard deviations of intercept and slope, and on the correlation of these two terms (see more information
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on this prior choice in Barnard, McCulloch, & Meng, 2000):

σeLevel2 ∼ unif(0, 100)

σeβ1 ∼ unif(0, 100)

σeβ2 ∼ unif(0, 100)

ρeβ12 ∼ unif(−1, 1).

To get the covariance matrix, we can simply calculate the covariance from the standard deviations and

correlation: σeβ12 = σeβ21 = ρeβ12σeβ1σeβ2 . Note that in our current bivariate GCM specification, the

correlation of intercept and slope parameter also has a posterior distribution and its likely range can be

easily evaluated.

Application: babies, fathers and love

Study aims

To reiterate, the original purpose of this marital study was to assess aspects of marital change across

the transition to parenthood. A longitudinal design was chosen to assess how trajectories for marital

quality, measured from the last trimester of pregnancy through three years postpartum, varied in form and

rates of change across individual fathers. In our application, we use a sample dataset that is a subset of

the original dataset, consisting of fathers’ measures of feelings of love and positivity scores.

Subjects

Subjects in this dataset are 108 fathers. At time of enrollment, all were in intact marriages and

expecting their first child. All families were Caucasian and of middle- and working-class socioeconomic

status. For our purposes, we assess a subset of the original sample, containing only those fathers who had

provided grouping measures for their pre-childbirth level of marital positivity.

Love factor of marital quality

To identify patterns of marital change, Belsky and Rovine (1990) measured four aspects of the marital

relationship: love, conflict, ambivalence, and maintenance. In the current study our sample dataset includes
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fathers’ love measures only. The love scores are self-reports on the Braiker and Kelley (1979) love subscale,

from fathers at -3 months, 3 months, 9 months, and 36 months relative to when they had their first child.

This love subscale is a 10-item scale of intimate relations, assessing attitudes and beliefs about the parties

in the relationship. Questions such as “to what extent do you have a sense of belonging with your partner?”

(love) are answered on a 9-point scale (from very little or not at all, to very much or extremely). Internal

consistencies of these scales across the four waves ranged from .61 to .92 for fathers and wives.

Positivity scores were constructed based on a 45-item life events checklist. This tool measured

whether or not each listed event had taken place since onset of marriage, and measured the effect of the

experienced events on a 7-point scale (low point = very negative effect, midpoint = no effect, high point

= very positive effect). All fathers completed the checklist at measurement occasion 1, and ratings for

positive effect responses were summed to create each individual’s total positivity score.

Step-by-step guide to fitting a Bayesian growth curve model in R

Here we provide step-by-step guidelines and computer script to fit GCM in the Bayesian framework

by using R (with RStudio, RStudio Team, 2015) and JAGS (see e.g., in Plummer et al., 2003), which

are open source statistical software packages. The most frequently used programs for fitting GCMs in

the structural equation modeling framework include LISREL, Amos, and Mplus, whereas fitting GCMs

as linear mixed models is more commonly done in SAS or SPSS. Some of these software packages have a

Bayesian module in which GCM can be fitted, however all these programs include license fees.

Fitting models in JAGS provides more flexibility for custom extensions, including various prior

specifications. As an alternative to using R to communicate with JAGS, MATLAB can also be used to

formulate the Bayesian GCM via the Trinity package presented in this issue. See more details on the

currently available programs in the Software options section later. Note that the Bayesian formulation of

the GCM models applies across different statistical computing languages.

The following section explains how to fit a linear Bayesian GCM. We provide written explanation to

guide the reader through five key modeling steps, with programming syntax (offset by grey background)

that provides the necessary R code and R output. The R output is always preceded by double hashtags. For

execution in R Studio, the reader can copy our code from this paper directly, or access the corresponding
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R file or a .Rnw formatted version of this paper at the Git repository of the project.

Step 0: First install R, RStudio and JAGS. Then install the rjags package in RStudio so that R can work

with JAGS.

# Step 0

# Installing the software

install.packages("rjags") # commented out when rjags is already installed

Step 1: Once the appropriate software is installed, we begin by reading the dataset into R and specifying

which pertinent variables should be extracted for the analysis (note that in the script below it is assumed

that the current working directory in R contains the data set). The code chunk below describes these steps:

reading in the data, checking the data, counting the number of persons, extracting the 4 measurements

for each person (data), and defining the grouping variable (grouping, separated to X1 for low positivity

and X2 for high positivity). Then we create the time vector by setting the first measurement occasion to

0 (i.e., centering time) while keeping the relative spacing between occasions identical. Finally, we create a

list of all these variables in a format that can be read by JAGS, which is our generic Bayesian estimator

engine for the analysis.

# Step 1

# Reading in the data

FathersLoveData <- read.csv("lovedata.csv")

# Visually checking the data

head(FathersLoveData)

## Y1 Y2 Y3 Y4 Positivity X1 X2

## 1 79 83 70 75 3 0 1

## 2 80 81 85 63 3 0 1

## 3 81 73 80 78 3 0 1

## 4 78 80 76 79 1 1 0

## 5 78 83 79 62 1 1 0

## 6 79 67 77 77 2 0 0
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# The first column (unnamed) is the person/row number:

# each participant's data corresponds to one row

# Y1-Y4 are the love scores for each person

# 'Positivity' is the positivity group for each person: 1: low, 2: medium, 3: high

# X1-X2 reflect positivity group via dummy coding:

# X1 takes value 1 for low positivity, otherwise 0

# X2 takes value 1 for high positivity, otherwise 0

# Checking the number of rows (i.e., 2nd dimension) of `FathersLoveData' data

N <- dim(FathersLoveData)[1] # count number of rows to get number of subjects

# Creating a matrix with only love scores: Y1-Y4 (columns 1-4):

# We `unlist' all N rows of selected columns 1:4 from the data set,

# then transform these values into numeric entries of a matrix

data <- as.matrix(FathersLoveData[,1:4])

# Creating a variable that indicates the number of time points

nrT <- 4

# Saving X1 and X2 as separate variables (same unlisting process as performed above)

grouping <- as.matrix(FathersLoveData[,6:7])

X1 <- grouping[,1] # 1 when person had low positivity before child

X2 <- grouping[,2] # 1 when person had high positivity before child

# Creating a time vector for the measurement waves

time <- c(-3, 3, 9, 36) # time vector (T) based on the time values of our measures

# Now we have all the data needed to be passed to JAGS
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# Creating a list of all the variables that we created above

jagsData <- list("Y"=data,"X1"=X1,"X2"=X2,"N"=N,"nrT"=nrT,"time"=time)

Step 2: Next we write out the GCM in JAGS language, following the model specifications in Equa-

tions 1 and 6, and their corresponding prior specifications. In this code chunk, we use loop functions

to handle the nesting structure in our data (i.e., multiple people in the population, multiple measures per

person). First we create a population-level loop function over our multiple participants, then within this

loop we create an individual-level loop function over the multiple observations of an individual. At the

center of these nested loops, we define the likelihood function (under the line The likelihood), which

describes the assumed data generating distribution, as shown in Equation 1. The shape of the likelihood

is chosen to be normal. Due to programming requirements in JAGS, we specify the normal distribution

in terms of mean and precision, instead of mean and variance. Precision is defined as the reciprocal of the

variance, therefore it is a simple one-to-one transformation: precision = 1/variance. Every time we specify

a normal distribution, denoted with dnorm in JAGS, we will plug in the reciprocal of the variance as the

second parameter. This is a technical matter and does not impact specification of the GCM.

Next, we close our inner, individual-level loop over observations and specify our person-specific hyperprior

distributions, which correspond to the two person-specific parameters, the person intercept and the person

slope (beta[i,1:2]). We call this a hyperprior distribution because it sets priors on hyperparameters, that

is on parameters of the population distributions of the β-s, as specified in Equation 6. Technically, the prior

distribution of the β-s is hyperparameterized, instead of its parameters being set to a fixed value, like we

have seen in the Equations specifying priors above. We chose this population distribution to be a bivariate

(or more generally, multivariate) normal distribution with a mean vector and a precision matrix, as shown

in Equation 6. The precision matrix is simply the matrix inverse of our covariance matrix in Equation 6.

As with dnorm, the JAGS language expects a precision matrix as an input for the multivariate normal

distribution (denoted dmnorm in the syntax), and requires a one-to-one transformation from precision to

variance.

# Step 2

# Specifying the growth curve model
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LinearGrowthCurve = cat("

model {

# Loop over participants

for (i in 1:N) {

# Loop over measurement occasions

for (t in 1:nrT) {

# Specifying likelihood function, corresponding to Equation 1:

Y[i,t] ~ dnorm(betas[i,1]+betas[i,2]*time[t], 1/pow(sdLevel1Error,2))

}

# Specifying the level-2 bivariate distribution of intercepts and slopes (Eq. 6)

betas[i,1:2] ~ dmnorm(Level2MeanVector[i,1:2], interpersonPrecisionMatrix[1:2,1:2])

# The mean of the intercept is modeled as a function of positivity group membership

Level2MeanVector[i,1] <- MedPInt + betaLowPInt*X1[i] + betaHighPInt*X2[i]

Level2MeanVector[i,2] <- MedPSlope + betaLowPSlope*X1[i] + betaHighPSlope*X2[i]

}

# Specifying prior distributions

MedPInt ~ dnorm(0,0.01)

MedPSlope ~ dnorm(0,0.01)

betaLowPInt ~ dnorm(0,0.01)

betaHighPInt ~ dnorm(0,0.01)

betaLowPSlope ~ dnorm(0,0.01)

betaHighPSlope ~ dnorm(0,0.01)

sdLevel1Error ~ dunif(0,100)

sdIntercept ~ dunif(0,100)
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sdSlope ~ dunif(0,100)

corrIntSlope ~ dunif(-1,1)

# Transforming model parameters

# 1. Defining the elements of the level-2 covariance matrix

interpersonCovMatrix[1,1] <- sdIntercept * sdIntercept

interpersonCovMatrix[2,2] <- sdSlope * sdSlope

interpersonCovMatrix[1,2] <- corrIntSlope * sdIntercept* sdSlope

interpersonCovMatrix[2,1] <- interpersonCovMatrix[1,2]

# 2. Taking the inverse of the covariance to get the precision matrix

interpersonPrecisionMatrix <- inverse(interpersonCovMatrix)

# 3. Creating positivity variables representing:

# 3.1. Low positivity intercept

LowPInt <- MedPInt + betaLowPInt

# 3.2. High positivity intercept

HighPInt <- MedPInt + betaHighPInt

# 3.3. Low positivity slope

LowPSlope <- MedPSlope + betaLowPSlope

# 3.4. High positivity slope

HighPSlope <- MedPSlope + betaHighPSlope

# 4. Contrast terms between high-low, medium-low, high-medium intercepts and slopes

HighLowPInt <- betaHighPInt - betaLowPInt

MedLowPInt <- - betaLowPInt

HighMedPInt <- betaHighPInt

HighLowPSlope <- betaHighPSlope - betaLowPSlope

MedLowPSlope <- - betaLowPSlope

HighMedPSlope <- betaHighPSlope
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}

",file = "GCM.txt")

Next, beneath the line Specifying priors and transforming variables we specify our prior distribu-

tions (non-hyperpriors) on parameters in line with equations described above. Lastly we create some new

variables for planned comparison of our groups, (e.g., LowPInt; these variables all have the <- specifica-

tion), which are one-to-one transformations of previously defined variables corresponding to our grouping

levels. Inclusion of variable transformation is optional and depends on unique research questions; in our

case it is interesting to add these contrast terms between the groups. The variable HighLowPInt for ex-

ample represents the posterior probability distribution of the difference between the intercepts in the high

and in the low positivity groups. The last line of code writes our model variable into file named GCM.txt.

Step 3: Next we estimate our Bayesian model parameters through sampling from their posterior distribu-

tion via MCMC algorithms, implemented in JAGS. To illustrate this process, we outline some important

settings and specifications for the Bayesian estimation algorithm.

Monitoring parameters. First we create a vector called parameters in which we collect the names of

all parameters that we want to examine. JAGS will save the posterior samples only for the parameters

included in this vector. We will first check whether the posterior sample chains have converged to the same

area; more details on how to check the “convergence” will be provided below. The results are considered

stable and reliable only after convergence criteria are met. Recall that we sometimes create parameters

inside the JAGS code by simply transforming some other parameter(s) (i.e., computing the variance by

squaring the standard deviation): these transformed parameters are necessary to include in the list if we

want to draw inference about their likely values.

Specifying sampler settings. After collecting parameters, the remaining lines of Step 3 concern specifications

for handling JAGS’s sampling algorithm. Since Bayesian posteriors are described through representative

samples, we focus on how to handle our chosen algorithm to ensure that samples are accurate representa-

tions. Sampling is carried out in several iterations, typically in the range of thousands. In each iteration

a new sample is drawn from the conditional posterior for each parameter (or a vector of parameters), and

this new sample is conditional on the previously drawn value of all other parameters and the data. First,
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the sampling algorithm has to be adapted for the model and data: for this purpose 2000 adaptation

iterations are typically sufficient. Second, while JAGS generates random initial values for sampling, it is

good practice to restart the sampling algorithm several times: that is to say several chains should be run

(e.g., we recommend 6, although this number is somewhat arbitrary, and running only 3-4 chains can also

be a good option when the burnin-in and adaptation iterations take a long time). The first iterations from

our chains should always be discarded, as they are most likely influenced by the starting value of the chain

and not yet converged to the target posterior area. This can be done by setting the burnin value to for

example 1000: these first 1000 samples are drawn, but not included in the final posterior samples.

Within a chain the sampled parameter values might have high autocorrelation. We need a reasonable

number of samples that are free from autocorrelation (as these contain more information, see below),

therefore when high autocorrelation occurs, we must run longer chains. In complex models with many

person-specific parameters long chains may exceed computer memory for storing and processing (calculating

posterior summaries), an issue that may be addressed by thinning. By thinning the chains we only save

every xth sample (e.g., in our example, we save every fifth sample), this way decreasing autocorrelation

among consecutive samples, while also reducing the size of the chain resulting in less demand in terms of

memory requirements . We choose to use thinning of 5. Link and Eaton (2012) showed that thinned chains

have somewhat reduced information, thus thinning is only recommend if computer memory is an issue.

We focus on reducing autocorrelation in sample chains because lower autocorrelation means more repre-

sentative random sampling – “quality” samples are barely correlated. We will later quantify the quality

of our samples in terms of effective sample size (ESS). In the postSamples line we specify how many

posterior samples we want for each parameter, our chosen value of 30000 (5000 for each chain) suffices for

most models. The final line calculates how many number of iterations JAGS will need, as a function of

number of chains and thinning, to achieve the required sizeofPost sample size.

# Step 3

# Monitoring parameters

parameters <- c("MedPSlope","betaLowPInt",

"betaHighPInt","betaLowPSlope",

"betaHighPSlope", "MedPInt",
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"sdIntercept", "sdSlope",

"corrIntSlope", "sdLevel1Error","betas",

"LowPInt","HighPInt","LowPSlope","HighPSlope",

"HighLowPInt","HighMedPInt","MedLowPInt",

"HighLowPSlope","HighMedPSlope","MedLowPSlope")

# Specifying sampler settings

adaptation <- 2000 # Number of steps to "tune" the samplers

chains <- 6 # Re-start the exploration "chains" number of times

burnin <- 1000 # Number of steps to get rid of the influence of initial values

thinning <- 5

# Defining the number of samples drawn from the posterior in each chain

postSamples <- 30000

# Computing the number of posterior samples needed per chain for JAGS

nrOfIter <- ceiling((postSamples*thinning)/chains)

Step 4: The package rjags (connecting JAGS with R) must be loaded into the R environment, as shown

in the first R command line of the following code chunk. The next line uses an rjags function to compile

a JAGS model object and adapt its samplers, it is named as jagsModel in our example. Then sampling is

done in two phases: a burnin phase (see update line, these first iterations arediscarded), and a posterior

sampling phase. Posterior samples are retained from this latter phase only, and are saved in a variable

named codaSamples.

# Step 4

# Loading the rjags package

library(rjags)

# Creating JAGS model object

jagsModel<-jags.model("GCM.txt",data=jagsData,n.chains=chains,n.adapt=adaptation,inits=fixedinits)

## Compiling model graph

## Resolving undeclared variables
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## Allocating nodes

## Graph information:

## Observed stochastic nodes: 432

## Unobserved stochastic nodes: 118

## Total graph size: 5466

##

## Initializing model

# Running burn-in iterations

update(jagsModel,n.iter=burnin)

# Drawing posterior samples

codaSamples<-coda.samples(jagsModel,variable.names=parameters,n.iter=nrOfIter, thin = thinning,seed=5)

Step 5: Once sampling is done, we can explore the posterior distributions of the model parameters of

interest. We make use of function, posteriorSummaryStats.R, which can be found as an online resource

on the Git project site. The script uses functions from the coda package from Plummer, Best, Cowles, and

Vines (2006) and from the utility script of Kruschke (2015). We note here that the coda package loads

automatically with rjags and has built in summary and convergence checks functions that the reader might

find useful, which calculates summary statistics from the posterior distributions.

# Step 5

source("posteriorSummaryStats.R")

# Part 1: Check convergence

resulttable <- summarizePost(codaSamples)

saveNonConverged <- resulttable[resulttable$RHAT>1.1,]

if (nrow(saveNonConverged) == 0){

print("Convergence criterion was met for every parameter.")

}else{

print("Not converged parameter(s):")

show(saveNonConverged)
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}

## [1] "Convergence criterion was met for every parameter."

# Part 2: Display summary statistics for selected parameters

# with the summarizePost function. Type the name of the parameter of interest

# in the 'filter' argument, or use rules based on regular expressions

show(summarizePost(codaSamples, filters = c("^Med","^Low","^High","^sd","^corr")))

## mean PSD PCI 2.50% PCI 97.50% 95% HDI_Low 95% HDI_High

## HighLowPInt 5.0164 1.8073 1.4358 8.5406 1.6039 8.6836

## HighLowPSlope 0.1707 0.0548 0.0627 0.2772 0.0622 0.2766

## HighMedPInt 2.0630 1.7687 -1.3876 5.5680 -1.4521 5.4967

## HighMedPSlope 0.0520 0.0539 -0.0531 0.1572 -0.0525 0.1573

## HighPInt 77.3477 1.3054 74.7688 79.9133 74.7455 79.8828

## HighPSlope -0.0316 0.0393 -0.1083 0.0457 -0.1094 0.0445

## LowPInt 72.3313 1.2676 69.8572 74.8251 69.9044 74.8691

## LowPSlope -0.2024 0.0386 -0.2777 -0.1266 -0.2776 -0.1265

## MedLowPInt 2.9533 1.7390 -0.5312 6.3260 -0.4635 6.3730

## MedLowPSlope 0.1188 0.0536 0.0135 0.2214 0.0129 0.2209

## MedPInt 75.2847 1.2210 72.8432 77.6665 72.9628 77.7849

## MedPSlope -0.0836 0.0371 -0.1564 -0.0113 -0.1561 -0.0111

## corrIntSlope 0.2344 0.2498 -0.1935 0.8016 -0.2222 0.7593

## sdIntercept 6.7014 0.6123 5.5770 7.9637 5.5617 7.9427

## sdLevel1Error 5.7006 0.2817 5.1692 6.2731 5.1650 6.2671

## sdSlope 0.1222 0.0357 0.0451 0.1873 0.0478 0.1898

## ESS RHAT

## HighLowPInt 26415 1.0002

## HighLowPSlope 13328 1.0002

## HighMedPInt 17256 1.0000

## HighMedPSlope 6556 1.0000



21

## HighPInt 26137 1.0000

## HighPSlope 12185 1.0000

## LowPInt 26020 1.0001

## LowPSlope 13480 1.0002

## MedLowPInt 17326 1.0000

## MedLowPSlope 7174 1.0001

## MedPInt 16170 1.0000

## MedPSlope 5994 1.0000

## corrIntSlope 1973 1.0040

## sdIntercept 16761 1.0000

## sdLevel1Error 5139 1.0010

## sdSlope 1383 1.0039

Part 1. The first R command of the Step 5 code chunk calls this function into the R environment.

The subsequent lines check convergence. As mentioned above, for each parameter, we ran several chains

with disperse starting values to explore the posterior distributions. For our results to be reliable, we must

confirm that the chains converge to the same area, per parameter; this ensures that all chains are tuned

to find similar likely values for the parameter.

We recommend graphical and numerical convergence checks of the posterior distribution. Figure 2

shows two graphical checks of the level-2 high positivity intercept parameter. 2 The plot on the left depicts

the six samples chains: we can see that the chains overlap very well, indicating that they converged to

the same area. The plot on the right shows the smoothed posterior probability densities for the same

parameters, depicted with different colors for each chain. These densities also nicely overlap, implying

convergence.

Aside from graphical checks, we use R̂ statistic (see, e.g., in Gelman et al., 2013) as a numerical

indicator for convergence. The R̂ statistic is a ratio of the between and the within chain variances. If all

chains converged to a region of representative samples, then the variance between the chains should be

2Computer script generating the figures are available in the Git repository of the project.
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Figure 2. Graphical checks for convergence.

more or less the same as the mean variance within the chains (across iterations). Conventionally, R̂ < 1.1

suggests that the chains for a certain parameter reached convergence. While this criterion is commonly

set at 1.1, it can be changed to be more conservative (e.g., 1.05). In the code block below, there is a If

statement to send a confirmation message if all parameters converge (as below, “Convergence criterion was

met for every parameter.”), otherwise R will display the name and posterior statistics of the unconverged

parameters. If this unconverged parameter table appears (an example is not shown here) and the R̂ values

are around 1.2, you can often solve the problem by re-running the analysis with an increased required

posterior sample size (sizeofPost). R̂ values above 2 most likely refer to serious misfit between model

and data, or coding error. Results should only be interpreted when chains are converged for all parameters.

Part 2. : The second part of the code chunk calculates posterior statistics for the parameters of

interest: intercept and slopes in the low, medium and high positivity groups, contrast terms between

the groups, standard deviations and correlation between intercepts and slopes. A useful posterior point

estimate for parameters of interest is the mean of the posterior distribution. The PSD column shows the

posterior standard deviation, which quantifies the uncertainty around the point estimate (similarly to a

standard error in the classical statistical framework). The 2.5% and 97.5% columns designate the two

ends of the 95% posterior credibility interval (PCI), which is the center 95% of the posterior probability

distribution of the parameter: parameters will fall in this interval with probability .95. Next to these are
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the low and high ends of the 95% highest probability density (HDI) interval: this interval designates the

95% range of values with the highest probability density. As seen in our summary table, the limits of PCI

and HDI are almost identical, due to the fact that the posterior distribution is approximately symmetrical.

However, for skewed distributions the equal tailed PCI might exclude values with high probability density

in favor of values with low probability density.

As referenced in our discussion of ”quality” samples above, the ESS column of the summary table

measures effective sample size: number of total posterior samples that do not correlate substantially. ESS

counts our “quality” samples. As a general rule of thumb we should have a couple of thousands effective

samples per parameter; (Kruschke, 2015, Section 7.5.2) recommends 10,000 for getting stable estimates on

the limits of some selected HDI. As can be seen some of the reported parameters have somewhat less than

10,000 effective samples. For these cases we could simply draw more iterations to achieve a higher ESS, but

we decided not to as we are not interested in their HDI limits (e.g., for population variance parameters).

Lastly, the Rhat column in the summary table shows the R̂ statistics values discussed above in the context

of convergence. Values very close to 1 suggest good convergence; most of our parameters have this value,

and none has Rhat larger than 1.1.

Results

Graphical illustrations

The Bayesian GCM helps us articulate how men experience marital love during their transition to

fatherhood. Per the summary table above, results of this study suggest that husbands’ experience of

marital love across the transition to fatherhood is adequately explained by a linear Bayesian GCM, which

accounts for within- and between-person dynamics. While not shown in this paper to conserve space,

the above GCM analysis provides us with estimates of all person-specific (N = 106) intercept and slope

parameters. These person-specific estimates have probability distributions and the most probable range

of values can be inferred. The user can print these estimates by adding the variable names (’betas’) into

the filter argument of the summarizePost function in Step 5, Part 2. Figure 3 shows the model predicted

person-specific slopes based on the posterior mean estimates of the person-specific parameters.

Compared with the raw data trajectories in Figure 1, the estimated lines in Figure 3 reflect both
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Figure 3. Person-specific trajectory estimates.

person-specific (each line) and group-specific (each panel) patterns. The person-specific estimates shrink

away from the raw observations in Figure 1 and towards the estimated population trajectory, illustrated

in Figure 4 (see more on that below). By using multiple levels of information, these estimated trajectories

shift in magnitude to their sample size (i.e., smaller samples shrink more, and benefit most from shrinkage)

and exhibit better out-of-sample prediction.

Figure 4 gives a graphical illustration of the level-2 results. The thick lines illustrate the population

slope for a given group, and the surrounding area shows the posterior uncertainty around the population

slope estimate, based on the posterior samples. As in Figure 3, trends governed by the time-invariant

positivity grouping factor can be noticed in Figure 4: low and high positivity groups visibly differ in their

love trajectories. Although we can visually spot differences in these plots, we next examine whether there

is enough supporting evidence to confirm there are meaningful differences in group trends.

Numerical summaries

The Bayesian GCM yields a multi-parameterized solution, however here we extract only the most

pertinent estimates for interpretation. As can be seen by comparing intercept values across positivity

groups, the higher a father’s positivity level, the higher his level of marital love, with intercept values

quantifying the (linearly interpolated) levels of felt love at childbirth: high positivity intercept (M = 77.35,

HDI = (74.75, 79.88)), medium positivity intercept (M = 75.28, HDI = (72.96, 77.78)), low positivity
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Figure 4. Group differences. The thick line is based on the population values, and the surrounding area is based
on all the posterior samples.

intercept (M = 72.33, HDI = (69.90, 74.87)).

When it comes to slope estimates or differences among groups, it is useful to ask how likely it is

that these variables would differ from 0, or be practically equivalent to 0. We can designate a Region of

Practical Equivalence (or ROPE, see more discussion in Kruschke, 2015, Section 12.1) around 0, which

defines a range of parameter values that we consider to be practically equivalent to 0. The ROPE range

is typically small, with limits that depend on the substantive meaning of the parameters. In other words,

ROPE answers the question: what is a negligible amount of deviation from 0 with respect to the problem

at hand? For example for the current analysis, for the regression coefficients we selected a ROPE with

upper and lower limits -0.05 and +0.05 and we will check whether the 95% highest density interval excludes

this region to decide whether slope and contrast coefficients are credibly different from 0.

First, we explore the results on the group specific slope coefficients (rates of change in self-reported

marital love). The posterior mean for the low positivity group is -.20, with corresponding 95 % HDI ranging

from -0.28 to -0.13, which excludes our ROPE of [-0.05, +0.05], indicating that there is a credible negative

slope on the group level. This may be interpreted as suggesting that fathers who reported a low number

of positive life events before childbirth experienced decreasing feelings of marital love over the transition

to parenthood. In contrast, fathers with high or medium pre-birth positivity did not exhibit remarkable

upward or downward trajectories. The medium positivity group has a slight negative slope (M = -.08),
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but the posterior has a 95 % HDI from -0.16 to -0.01, which does not exclude our ROPE of [-0.05, +0.05].

The high positivity group trajectory is practically flat, with most likely values centered on zero: M = -.03,

95% HDI = (-0.11, +0.04). This 95 % HDI includes large part of our ROPE, suggesting that this group

exhibits a constant level of love for their partners across the transition to parenthood.

The person-specific intercept and slope terms showed a slight positive correlation (M = 0.23), the

95 % HDI ranges from -0.22 to +0.76, including our ROPE of [-0.05, +0.05], therefore there is no evi-

dence for credible correlation between these parameters. For the standard deviation parameters (sdSlope,

sdIntercept and sdLevel1Error) it does not make sense to designate a ROPE of [-0.05, +0.05], since

these parameters are constrained to be positive. Parameter sdSlope represents the individual differences

in slopes and we designate a ROPE of [0, +0.01] for this standard parameter, based on the expected mag-

nitude of the slope parameters. The posterior mean is of 0.12 with HDI from 0.05 to 0.19, meaning that

there are substantial individual differences in the slopes. The posterior estimate for the standard deviation

on level-1 (sdLevel1Error) is 5.70 with HDI from 5.17 to 6.27, which clearly indicates a credible stan-

dard deviation parameter: a reasonable ROPE for this parameter would have a wider range, for example

[0, 1]. Similar conclusion can be drawn about the standard deviation parameter representing individual

differences in intercepts (sdIntercept, posterior mean 6.70, HDI from 5.56 to 7.94).

Specific to our research interests, we aim to assess whether there are statistically meaningful differ-

ences in the intercepts and slopes of our 3 groups. Recall that we specified contrast terms to compare the

3 groups’ intercepts and slopes in the model fitting algorithm (Step 2 above): for example HighLowPInt

represented the difference between the credible values of the intercept in the high and in the low positivity

groups. Each contrast term has its own posterior probability distributions. In case of the HighLowPInt,

the posterior distribution is based on subtracting the sampled value of the low positivity intercept from the

high positivity intercept at every iteration. We specified 6 contrast terms, representing differences between

groups, in terms of intercepts and slopes: HighLowPInt, HighLowPSlope, HighMedPInt, HighMedPSlope,

MedLowPInt, MedLowPSlope. The posterior mean of the contrast term summarizes the magnitude of

these group differences, and for checking whether they are credibly different from 0 we will again look at

whether the 95 % HDIs exclude our ROPE of [-0.05, +0.05]. Out of the 6 contrast terms, 2 turned out to

be credibly different from 0: (1) High-positivity groups, compared to low-positivity groups, are higher in
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mean levels of felt love with 5.0164 magnitude (difference in intercepts, HighLowPInt, 95% HDI = (+1.60,

+8.68) excludes ROPE) and (2) High-positivity groups, compared to low groups, experience slightly less

decline (M = 0.17) in felt love over time (difference in slopes, HighLowPSlope, 95% HDI = (+0.06, +0.28)

excludes ROPE). These differences between low and high positivity groups can be seen visually in the

left and right panels of Figure 4. Medium-positivity groups, compared to low-positivity groups, experi-

ence slightly more love (M = 2.95) and less decline in felt love (M = 0.12), but the uncertainty around

these estimates, reflected by the relatively wide 95 % HDIs (MedLowPInt, 95 % HDI = (-0.46, +6.37);

MedLowPSlope, 95 % HDI = (+0.01, +0.22)) that include our ROPE of [ -0.05, +0.05 ] suggests that these

differences are not credible. Finally, the differences of credible values for intercepts and for slopes between

high and medium positivity groups are also not convincing (HighMedPInt, M = 2.06, 95 % HDI = (-1.45,

+5.50); HighMedPSlope, M = 0.05, 95 % HDI = (-0.05, +0.16)).

To conclude, we find interesting differences across positivity groups, but even the credible differences

are somewhat minor. Next we assess how appropriate our complex model is for this data set by comparing

the fit of the above GCM to a more complex and some simpler models.

Discussion

In this study we argued that implementing Bayesian estimation procedures for growth curve modeling

is acceptable in terms of ease via generic Bayesian inference engines such as JAGS. Although computation

time is often higher in the Bayesian framework than with MLE, the benefits - namely, flexible extension

and results with rich, intuitive probabilistic interpretations - are substantial. The Bayesian framework also

allows for incorporating existing knowledge on the likely values of the growth curve model parameters, via

the prior distribution when such information available.

Beyond a wide array of statistical advantages to modeling with posterior distributions, the Bayesian

framework offers robust estimating approaches for fitting the GCM. Previous studies have shown this ro-

bustness by demonstrating: (1) that Bayesian GCMs with uninformed priors yield maximum a posteriori

(MAP) estimates that are identical to maximum likelihood estimates; and (2) that the use of increasingly

informative priors serve to reduce standard deviations (Bayesian standard errors) of Bayesian GCM esti-

mates, as shown by Zhang, Hamagami, Wang, Nesselroade, and Grimm (2007). Zhang (2013) have also
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demonstrated the robust nature of Bayesian GCMs to handle nonnormal residual variance via the gener-

alized error distribution without adding error to inference. Zhang, Lai, Lu, and Tong (2013); Kruschke

(2015) also demonstrate how the likelihood function for the growth curve model can be easily adapted

to the unique features of a given dataset; for example to adapting the likelihood to a t-distribution to

accommodate outliers (see e.g., in Kruschke, 2015, Section 16.2).

In our example of marital love, GCM parameter estimates facilitated assessment of the psychological

process in question. By accounting for within- and between-person trajectories, as well as grouping factors,

we find meaningful measures to describe our subjects’ multifaceted emotional change process. We demon-

strated how our proposed Bayesian analysis can be implemented in JAGS and how posterior distributions

of the parameters of interest can be calculated and interpreted in straightforward, probabilistic terms.

We end with a final note on the advantage of using Bayesian estimation for GCM, as we enter a new

era of longitudinal data analysis. Although traditional GCMs have captured incremental linear change

processes, longitudinal applications and time scales are rapidly expanding, and researchers must consider

more complex functional forms of growth. The Bayesian approach provides flexible tools to estimate

parameters of complex change functions in the GCM framework.
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