The emodiversity construct was put forth by Quoidbach and colleagues (2014) describing the variety and relative abundance of individuals’ discrete emotion experiences. The original study used two samples and asked individuals to provide a single occasion rating of a number of discrete emotions. Results indicated that global, positive, and negative emodiversity were related to a variety of psychological and physical health items after accounting for mean levels of positive and negative emotions. Building on this initial work, Benson and colleagues (2017) published a methodological investigation of emodiversity using 30 days of diary data. Most recently, Brown & Coyne (2017) published a critique of the intial emodiversity paper, including critiques involving hierarchical regression and suppression. The following are a set of supplementary analyses utilizing the same As U Live data (Sturgeon, Zautra, & Okun, 2014) presented in the paper by Benson and colleagues (2017). Individuals reading these supplementary analyses are also encouraged to read the original articles on emodiversity.
Quoidbach, J., Gruber, J., Mikolajczak, M., Kogan, A., Kotsou, I., & Norton, M. I. (2014). Emodiversity and the emotional ecosystem. Journal of experimental psychology: General, 143(6), 2057. DOI: doi:10.1037/a0038025
Benson, L., Ram, N., Almeida, D. M., Zautra, A. J., & Ong, A. D. (2017). Fusing Biodiversity Metrics into Investigations of Daily Life: Illustrations and Recommendations With Emodiversity. The Journals of Gerontology: Series B. DOI: https://doi.org/10.1093/geronb/gbx025
Brown, N. J. L., & Coyne, J. C. (2017). Emodiversity: Robust Predictor of Outcomes or Statistical Artifact? Journal of Experimental Psychology. General. DOI: 10.1037/xge0000330
zautra_full <- read.csv("6_EmoDiversity_Emotion and Biomarker & Followup Data_Zautra_2016-12-09.csv",header=TRUE)library(psych)
library(ggplot2)
library(lavaan)
library(foreign)
library(car)
library(grid)
library(gridExtra)
library(RColorBrewer)
library(ineq)
library(reshape)zautra <- zautra_full[which(zautra_full$days >= 6),] Reduce dataset so same number of observations used in all models (for model fit comparison purposes later on) - this is for single occasion data using just the positive emotion items:
zautra2 <- zautra_full[which(!is.na(zautra_full$panaspos_c_mean_4wk) & 
                                 !is.na(zautra_full$panaspos_c_gini_4wk)),]Reduce dataset so same number of observations used in all models (for model fit comparison purposes later on) - this is for single occasion data using just the negative emotion items:
zautra3 <- zautra_full[which(!is.na(zautra_full$panasneg_c_mean_4wk) & 
                                 !is.na(zautra_full$panasneg_c_gini_4wk)),]Reduce dataset so same number of observations used in all models (for model fit comparison purposes later on) - this is for single occasion data using both positive and negative emotion items:
zautra4 <- zautra_full[which(!is.na(zautra_full$panaspos_c_mean_4wk) & 
                                 !is.na(zautra_full$panaspos_c_gini_4wk) &
                                 !is.na(zautra_full$panasneg_c_mean_4wk) & 
                                 !is.na(zautra_full$panasneg_c_gini_4wk)),]Please see Benson, Ram, Almeida, Zautra, & Ong (2017) for further details on the individual emotion items used to calculated positive and negative emodiversity, mean positive and negative emotion, and physical health.
# Center diary data variables
zautra$pos_b_gini.c <- scale(zautra$pos_b_gini,center=TRUE, scale=FALSE)
zautra$neg_b_gini.c <- scale(zautra$neg_b_gini,center=TRUE, scale=FALSE)
zautra$pos_c_mean.c <- scale(zautra$pos_c_mean,center=TRUE, scale=FALSE)
zautra$neg_c_mean.c <- scale(zautra$neg_c_mean,center=TRUE, scale=FALSE)
# Center single occasion data variables - participant reflecting over past 4 weeks
zautra2$panaspos_c_gini_4wk.c <- scale(zautra2$panaspos_c_gini_4wk,center=TRUE, scale=FALSE)
zautra4$panaspos_c_gini_4wk.c <- scale(zautra4$panaspos_c_gini_4wk,center=TRUE, scale=FALSE)
zautra3$panasneg_c_gini_4wk.c <- scale(zautra3$panasneg_c_gini_4wk,center=TRUE, scale=FALSE)
zautra4$panasneg_c_gini_4wk.c <- scale(zautra4$panasneg_c_gini_4wk,center=TRUE, scale=FALSE)
zautra2$panaspos_c_shannon_4wk.c <- scale(zautra2$panaspos_c_shannon_4wk,center=TRUE, scale=FALSE)
zautra4$panaspos_c_shannon_4wk.c <- scale(zautra4$panaspos_c_shannon_4wk,center=TRUE, scale=FALSE)
zautra3$panasneg_c_shannon_4wk.c <- scale(zautra3$panasneg_c_shannon_4wk,center=TRUE, scale=FALSE)
zautra4$panasneg_c_shannon_4wk.c <- scale(zautra4$panasneg_c_shannon_4wk,center=TRUE, scale=FALSE)
zautra2$panaspos_c_mean_4wk.c <- scale(zautra2$panaspos_c_mean_4wk,center=TRUE, scale=FALSE)
zautra4$panaspos_c_mean_4wk.c <- scale(zautra4$panaspos_c_mean_4wk,center=TRUE, scale=FALSE)
zautra3$panasneg_c_mean_4wk.c <- scale(zautra3$panasneg_c_mean_4wk,center=TRUE, scale=FALSE)
zautra4$panasneg_c_mean_4wk.c <- scale(zautra4$panasneg_c_mean_4wk,center=TRUE, scale=FALSE)Descritpives:
describe(zautra[,c("physhealth","pos_c_mean","pos_b_gini")])##            vars   n  mean    sd median trimmed   mad   min    max range
## physhealth    1 141 77.74 21.33  84.44   81.02 16.40 12.06 100.00 87.94
## pos_c_mean    2 175  2.09  0.77   2.10    2.09  0.69  0.20   3.96  3.76
## pos_b_gini    3 175  0.92  0.11   0.97    0.95  0.04  0.39   1.00  0.61
##             skew kurtosis   se
## physhealth -1.23     0.78 1.80
## pos_c_mean -0.04    -0.08 0.06
## pos_b_gini -2.37     5.97 0.01Plot bivariate associations:
pairs.panels(zautra[,c("physhealth","pos_c_mean","pos_b_gini")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod1a <- lm(physhealth ~ pos_c_mean.c,
           data = zautra)
summary(mod1a)## 
## Call:
## lm(formula = physhealth ~ pos_c_mean.c, data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.543 -11.753   4.911  13.625  35.336 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    77.655      1.647   47.16  < 2e-16 ***
## pos_c_mean.c   11.302      2.153    5.25 5.56e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.55 on 139 degrees of freedom
##   (34 observations deleted due to missingness)
## Multiple R-squared:  0.1655, Adjusted R-squared:  0.1595 
## F-statistic: 27.57 on 1 and 139 DF,  p-value: 5.557e-07mod1a_adjrsq <- summary(mod1a)$adj.r.squared
mod1a_beta1 <- summary(mod1a)$coefficients[2]Fit regression model:
mod1b <- lm(physhealth ~ pos_c_mean.c + pos_b_gini.c,
           data = zautra)
summary(mod1b)## 
## Call:
## lm(formula = physhealth ~ pos_c_mean.c + pos_b_gini.c, data = zautra)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -59.01 -11.62   4.58  12.80  44.28 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    77.641      1.644   47.22   <2e-16 ***
## pos_c_mean.c    8.619      3.101    2.78   0.0062 ** 
## pos_b_gini.c   25.322     21.098    1.20   0.2321    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.52 on 138 degrees of freedom
##   (34 observations deleted due to missingness)
## Multiple R-squared:  0.1741, Adjusted R-squared:  0.1622 
## F-statistic: 14.55 on 2 and 138 DF,  p-value: 1.85e-06mod1b_adjrsq <- summary(mod1b)$adj.r.squared
mod1b_beta1 <- summary(mod1b)$coefficients[2]
mod1b_beta2 <- summary(mod1b)$coefficients[3]Fit regression model:
mod1c <- lm(physhealth ~ pos_c_mean.c + pos_b_gini.c + I(pos_c_mean.c*pos_b_gini.c),
           data = zautra)
summary(mod1c)## 
## Call:
## lm(formula = physhealth ~ pos_c_mean.c + pos_b_gini.c + I(pos_c_mean.c * 
##     pos_b_gini.c), data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -61.718 -10.598   5.938  12.918  43.723 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      79.086      2.369  33.384  < 2e-16 ***
## pos_c_mean.c                     10.030      3.521   2.848  0.00507 ** 
## pos_b_gini.c                     -2.527     39.037  -0.065  0.94848    
## I(pos_c_mean.c * pos_b_gini.c)  -22.882     26.975  -0.848  0.39777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.54 on 137 degrees of freedom
##   (34 observations deleted due to missingness)
## Multiple R-squared:  0.1784, Adjusted R-squared:  0.1605 
## F-statistic: 9.919 on 3 and 137 DF,  p-value: 5.82e-06mod1c_adjrsq <- summary(mod1c)$adj.r.squared
mod1c_beta1 <- summary(mod1c)$coefficients[2]
mod1c_beta2 <- summary(mod1c)$coefficients[3]Model fit comparisons:
anova(mod1a,mod1b); fit1 <- anova(mod1a,mod1b)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ pos_c_mean.c
## Model 2: physhealth ~ pos_c_mean.c + pos_b_gini.c
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    139 53146                           
## 2    138 52597  1    549.03 1.4405 0.2321anova(mod1b,mod1c); fit2 <- anova(mod1b,mod1c)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ pos_c_mean.c + pos_b_gini.c
## Model 2: physhealth ~ pos_c_mean.c + pos_b_gini.c + I(pos_c_mean.c * pos_b_gini.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    138 52597                           
## 2    137 52322  1     274.8 0.7195 0.3978Summary:
The adjusted \(R^2\) for
Model fit comparisons:
The beta coefficient for mean positive emotion was
The beta coefficient for positive emodiversity was
Conclusions:
Descritpives:
describe(zautra[,c("physhealth","neg_c_mean","neg_b_gini")])##            vars   n  mean    sd median trimmed   mad   min    max range
## physhealth    1 141 77.74 21.33  84.44   81.02 16.40 12.06 100.00 87.94
## neg_c_mean    2 173  0.38  0.38   0.26    0.31  0.21  0.01   2.51  2.50
## neg_b_gini    3 173  0.49  0.18   0.48    0.48  0.19  0.12   0.95  0.83
##             skew kurtosis   se
## physhealth -1.23     0.78 1.80
## neg_c_mean  2.69     9.66 0.03
## neg_b_gini  0.13    -0.50 0.01Plot bivariate associations:
pairs.panels(zautra[,c("physhealth","neg_c_mean","neg_b_gini")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod2a <- lm(physhealth ~ neg_c_mean.c,
           data = zautra)
summary(mod2a)## 
## Call:
## lm(formula = physhealth ~ neg_c_mean.c, data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -63.753  -9.363   4.410  13.058  43.420 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    76.904      1.611  47.741  < 2e-16 ***
## neg_c_mean.c  -28.870      4.729  -6.104 9.99e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.97 on 137 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.2138, Adjusted R-squared:  0.2081 
## F-statistic: 37.26 on 1 and 137 DF,  p-value: 9.992e-09mod2a_adjrsq <- summary(mod2a)$adj.r.squared
mod2a_beta1 <- summary(mod2a)$coefficients[2]Fit regression model:
mod2b <- lm(physhealth ~ neg_c_mean.c + neg_b_gini.c,
           data = zautra)
summary(mod2b)## 
## Call:
## lm(formula = physhealth ~ neg_c_mean.c + neg_b_gini.c, data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.586  -9.264   4.763  13.388  41.518 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    76.904      1.592  48.293  < 2e-16 ***
## neg_c_mean.c  -35.824      5.782  -6.196 6.45e-09 ***
## neg_b_gini.c   23.756     11.620   2.045   0.0428 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.75 on 136 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.2373, Adjusted R-squared:  0.2261 
## F-statistic: 21.15 on 2 and 136 DF,  p-value: 1.002e-08mod2b_adjrsq <- summary(mod2b)$adj.r.squared
mod2b_beta1 <- summary(mod2b)$coefficients[2]
mod2b_beta2 <- summary(mod2b)$coefficients[3]Fit regression model:
mod2c <- lm(physhealth ~ neg_c_mean.c + neg_b_gini.c + I(neg_c_mean.c*neg_b_gini.c),
           data = zautra)
summary(mod2c)## 
## Call:
## lm(formula = physhealth ~ neg_c_mean.c + neg_b_gini.c + I(neg_c_mean.c * 
##     neg_b_gini.c), data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -64.412  -6.820   5.419  12.731  34.472 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      73.712      1.807  40.788  < 2e-16 ***
## neg_c_mean.c                    -52.761      7.525  -7.011 1.03e-10 ***
## neg_b_gini.c                     38.465     12.035   3.196  0.00173 ** 
## I(neg_c_mean.c * neg_b_gini.c)   87.384     26.075   3.351  0.00104 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.08 on 135 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.2959, Adjusted R-squared:  0.2802 
## F-statistic: 18.91 on 3 and 135 DF,  p-value: 2.689e-10mod2c_adjrsq <- summary(mod2c)$adj.r.squared
mod2c_beta1 <- summary(mod2c)$coefficients[2]
mod2c_beta2 <- summary(mod2c)$coefficients[3]Model fit comparisons:
anova(mod2a,mod2b); fit1 <- anova(mod2a,mod2b)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ neg_c_mean.c
## Model 2: physhealth ~ neg_c_mean.c + neg_b_gini.c
##   Res.Df   RSS Df Sum of Sq    F  Pr(>F)  
## 1    137 49277                            
## 2    136 47808  1    1469.4 4.18 0.04283 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod2b,mod2c); fit2 <- anova(mod2b,mod2c)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ neg_c_mean.c + neg_b_gini.c
## Model 2: physhealth ~ neg_c_mean.c + neg_b_gini.c + I(neg_c_mean.c * neg_b_gini.c)
##   Res.Df   RSS Df Sum of Sq      F   Pr(>F)   
## 1    136 47808                                
## 2    135 44136  1    3671.8 11.231 0.001044 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Summary:
The adjusted \(R^2\) for
Model fit comparisons:
The beta coefficient for mean negative emotion was
The beta coefficient for negative emodiversity was
Conclusions:
Descritpives:
describe(zautra[,c("physhealth","pos_c_mean","neg_c_mean","pos_b_gini","neg_b_gini")])##            vars   n  mean    sd median trimmed   mad   min    max range
## physhealth    1 141 77.74 21.33  84.44   81.02 16.40 12.06 100.00 87.94
## pos_c_mean    2 175  2.09  0.77   2.10    2.09  0.69  0.20   3.96  3.76
## neg_c_mean    3 173  0.38  0.38   0.26    0.31  0.21  0.01   2.51  2.50
## pos_b_gini    4 175  0.92  0.11   0.97    0.95  0.04  0.39   1.00  0.61
## neg_b_gini    5 173  0.49  0.18   0.48    0.48  0.19  0.12   0.95  0.83
##             skew kurtosis   se
## physhealth -1.23     0.78 1.80
## pos_c_mean -0.04    -0.08 0.06
## neg_c_mean  2.69     9.66 0.03
## pos_b_gini -2.37     5.97 0.01
## neg_b_gini  0.13    -0.50 0.01Plot bivariate associations:
pairs.panels(zautra[,c("physhealth","pos_c_mean","neg_c_mean","pos_b_gini","neg_b_gini")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod3a <- lm(physhealth ~ pos_c_mean.c + neg_c_mean.c,
           data = zautra)
summary(mod3a)## 
## Call:
## lm(formula = physhealth ~ pos_c_mean.c + neg_c_mean.c, data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.419  -8.238   4.194  13.433  38.185 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    77.035      1.542  49.964  < 2e-16 ***
## pos_c_mean.c    7.932      2.149   3.691 0.000323 ***
## neg_c_mean.c  -23.208      4.779  -4.857 3.23e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.15 on 136 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.2854, Adjusted R-squared:  0.2749 
## F-statistic: 27.16 on 2 and 136 DF,  p-value: 1.192e-10mod3a_adjrsq <- summary(mod3a)$adj.r.squared
mod3a_betapos <- summary(mod3a)$coefficients[2]
mod3a_betaneg <- summary(mod3a)$coefficients[3]Fit regression model:
mod3b <- lm(physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + neg_b_gini.c,
           data = zautra)
summary(mod3b)## 
## Call:
## lm(formula = physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + 
##     neg_b_gini.c, data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.449  -9.379   4.123  12.769  35.714 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    77.036      1.524  50.544  < 2e-16 ***
## pos_c_mean.c    7.605      3.091   2.460   0.0152 *  
## neg_c_mean.c  -30.162      5.875  -5.134 9.78e-07 ***
## pos_b_gini.c    4.550     20.813   0.219   0.8273    
## neg_b_gini.c   24.342     11.787   2.065   0.0408 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.94 on 134 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.312,  Adjusted R-squared:  0.2914 
## F-statistic: 15.19 on 4 and 134 DF,  p-value: 2.881e-10mod3b_adjrsq <- summary(mod3b)$adj.r.squared
mod3b_betapos <- summary(mod3b)$coefficients[2]
mod3b_betaneg <- summary(mod3b)$coefficients[3]Fit regression model:
mod3c <- lm(physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + neg_b_gini.c + 
              I(pos_c_mean.c*pos_b_gini.c) + I(neg_c_mean.c*neg_b_gini.c),
           data = zautra)
summary(mod3c)## 
## Call:
## lm(formula = physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + 
##     neg_b_gini.c + I(pos_c_mean.c * pos_b_gini.c) + I(neg_c_mean.c * 
##     neg_b_gini.c), data = zautra)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.514  -8.639   4.206  12.829  31.045 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      77.030      2.321  33.185  < 2e-16 ***
## pos_c_mean.c                      7.941      3.357   2.366  0.01946 *  
## neg_c_mean.c                    -44.794      7.824  -5.725 6.63e-08 ***
## pos_b_gini.c                    -39.980     35.659  -1.121  0.26424    
## neg_b_gini.c                     33.283     12.184   2.732  0.00716 ** 
## I(pos_c_mean.c * pos_b_gini.c)  -40.619     24.533  -1.656  0.10016    
## I(neg_c_mean.c * neg_b_gini.c)   68.532     26.103   2.625  0.00968 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.46 on 132 degrees of freedom
##   (36 observations deleted due to missingness)
## Multiple R-squared:  0.358,  Adjusted R-squared:  0.3288 
## F-statistic: 12.27 on 6 and 132 DF,  p-value: 6.131e-11mod3c_adjrsq <- summary(mod3c)$adj.r.squared
mod3c_betapos <- summary(mod3c)$coefficients[2]
mod3c_betaneg <- summary(mod3c)$coefficients[3]Model fit comparisons:
anova(mod3a,mod3b)## Analysis of Variance Table
## 
## Model 1: physhealth ~ pos_c_mean.c + neg_c_mean.c
## Model 2: physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + neg_b_gini.c
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    136 44791                              
## 2    134 43125  2    1666.2 2.5886 0.07888 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod3a,mod3c)## Analysis of Variance Table
## 
## Model 1: physhealth ~ pos_c_mean.c + neg_c_mean.c
## Model 2: physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + neg_b_gini.c + 
##     I(pos_c_mean.c * pos_b_gini.c) + I(neg_c_mean.c * neg_b_gini.c)
##   Res.Df   RSS Df Sum of Sq      F   Pr(>F)   
## 1    136 44791                                
## 2    132 40243  4    4547.9 3.7293 0.006571 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod3b,mod3c)## Analysis of Variance Table
## 
## Model 1: physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + neg_b_gini.c
## Model 2: physhealth ~ pos_c_mean.c + neg_c_mean.c + pos_b_gini.c + neg_b_gini.c + 
##     I(pos_c_mean.c * pos_b_gini.c) + I(neg_c_mean.c * neg_b_gini.c)
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    134 43125                              
## 2    132 40243  2    2881.7 4.7261 0.01041 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Summary and conclusions: These results echo what was reported in the model 1 series (a, b, c) and model 2 series (a, b, c). This additional set of analyses is given to more closely match what was reported in Benson, Ram, Almeida, Zautra, & Ong, 2017. The model fit comparisons also suggest that mod3c provides the best/ most parsimonious fit to these data.
Note that in these analyses where emodiversity was calculated with single occasion data, I utilize the Quoidbach method of retaining the 0-4 scale for the emotion items.
Descritpives:
describe(zautra2[,c("physhealth","panaspos_c_mean_4wk","panaspos_c_gini_4wk")])##                     vars   n  mean    sd median trimmed   mad   min   max
## physhealth             1 148 78.05 20.94  85.09   81.21 15.38 12.06 100.0
## panaspos_c_mean_4wk    2 148  3.49  0.73   3.70    3.54  0.59  1.30   4.9
## panaspos_c_gini_4wk    3 148  0.84  0.15   0.88    0.86  0.09  0.17   1.0
##                     range  skew kurtosis   se
## physhealth          87.94 -1.27     0.96 1.72
## panaspos_c_mean_4wk  3.60 -0.69     0.37 0.06
## panaspos_c_gini_4wk  0.83 -1.97     4.41 0.01Plot bivariate associations:
pairs.panels(zautra2[,c("physhealth","panaspos_c_mean_4wk","panaspos_c_gini_4wk")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod4a <- lm(physhealth ~ panaspos_c_mean_4wk.c,
           data = zautra2)
summary(mod4a)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c, data = zautra2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.694  -6.087   3.937  11.964  36.737 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             78.051      1.506   51.82  < 2e-16 ***
## panaspos_c_mean_4wk.c   14.094      2.079    6.78 2.77e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.33 on 146 degrees of freedom
## Multiple R-squared:  0.2395, Adjusted R-squared:  0.2342 
## F-statistic: 45.97 on 1 and 146 DF,  p-value: 2.771e-10mod4a_adjrsq <- summary(mod4a)$adj.r.squared
mod4a_beta1 <- summary(mod4a)$coefficients[2]Fit regression model:
mod4b <- lm(physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c,
           data = zautra2)
summary(mod4b)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c, 
##     data = zautra2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.863  -6.958   4.286  10.447  42.590 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             78.051      1.479  52.775   <2e-16 ***
## panaspos_c_mean_4wk.c    7.617      3.266   2.333   0.0210 *  
## panaspos_c_gini_4wk.c   41.111     16.183   2.540   0.0121 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.99 on 145 degrees of freedom
## Multiple R-squared:  0.2719, Adjusted R-squared:  0.2618 
## F-statistic: 27.07 on 2 and 145 DF,  p-value: 1.025e-10mod4b_adjrsq <- summary(mod4b)$adj.r.squared
mod4b_beta1 <- summary(mod4b)$coefficients[2]
mod4b_beta2 <- summary(mod4b)$coefficients[3]Fit regression model:
mod4c <- lm(physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c + I(panaspos_c_mean_4wk.c*panaspos_c_gini_4wk.c),
           data = zautra2)
summary(mod4c)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c + 
##     I(panaspos_c_mean_4wk.c * panaspos_c_gini_4wk.c), data = zautra2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.129  -7.097   4.388  10.547  43.363 
## 
## Coefficients:
##                                                  Estimate Std. Error
## (Intercept)                                        78.299      1.807
## panaspos_c_mean_4wk.c                               7.840      3.405
## panaspos_c_gini_4wk.c                              37.218     22.939
## I(panaspos_c_mean_4wk.c * panaspos_c_gini_4wk.c)   -2.995     12.464
##                                                  t value Pr(>|t|)    
## (Intercept)                                       43.335   <2e-16 ***
## panaspos_c_mean_4wk.c                              2.303   0.0227 *  
## panaspos_c_gini_4wk.c                              1.622   0.1069    
## I(panaspos_c_mean_4wk.c * panaspos_c_gini_4wk.c)  -0.240   0.8105    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.05 on 144 degrees of freedom
## Multiple R-squared:  0.2722, Adjusted R-squared:  0.257 
## F-statistic: 17.95 on 3 and 144 DF,  p-value: 5.962e-10mod4c_adjrsq <- summary(mod4c)$adj.r.squared
mod4c_beta1 <- summary(mod4c)$coefficients[2]
mod4c_beta2 <- summary(mod4c)$coefficients[3]Model fit comparisons:
anova(mod4a,mod4b); fit1 <- anova(mod4a,mod4b)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    146 49028                              
## 2    145 46939  1    2089.1 6.4534 0.01213 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod4b,mod4c); fit2 <- anova(mod4b,mod4c)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_gini_4wk.c + 
##     I(panaspos_c_mean_4wk.c * panaspos_c_gini_4wk.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    145 46939                           
## 2    144 46921  1    18.809 0.0577 0.8105Summary:
The adjusted \(R^2\) for
Model fit comparisons:
The beta coefficient for mean positive emotion was
The beta coefficient for positive emodiversity was
Conclusions:
Descritpives:
describe(zautra2[,c("physhealth","panaspos_c_mean_4wk","panaspos_c_shannon_4wk")])##                        vars   n  mean    sd median trimmed   mad   min
## physhealth                1 148 78.05 20.94  85.09   81.21 15.38 12.06
## panaspos_c_mean_4wk       2 148  3.49  0.73   3.70    3.54  0.59  1.30
## panaspos_c_shannon_4wk    3 148  2.19  0.22   2.27    2.24  0.04  0.64
##                          max range  skew kurtosis   se
## physhealth             100.0 87.94 -1.27     0.96 1.72
## panaspos_c_mean_4wk      4.9  3.60 -0.69     0.37 0.06
## panaspos_c_shannon_4wk   2.3  1.67 -3.99    19.65 0.02Plot bivariate associations:
pairs.panels(zautra2[,c("physhealth","panaspos_c_mean_4wk","panaspos_c_shannon_4wk")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod4d <- lm(physhealth ~ panaspos_c_mean_4wk.c,
           data = zautra2)
summary(mod4d)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c, data = zautra2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.694  -6.087   3.937  11.964  36.737 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             78.051      1.506   51.82  < 2e-16 ***
## panaspos_c_mean_4wk.c   14.094      2.079    6.78 2.77e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.33 on 146 degrees of freedom
## Multiple R-squared:  0.2395, Adjusted R-squared:  0.2342 
## F-statistic: 45.97 on 1 and 146 DF,  p-value: 2.771e-10mod4d_adjrsq <- summary(mod4d)$adj.r.squared
mod4d_beta1 <- summary(mod4d)$coefficients[2]Fit regression model:
mod4e <- lm(physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c,
           data = zautra2)
summary(mod4e)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c, 
##     data = zautra2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.597  -7.619   3.644  11.314  42.756 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                78.051      1.480  52.744  < 2e-16 ***
## panaspos_c_mean_4wk.c       9.132      2.845   3.210  0.00163 ** 
## panaspos_c_shannon_4wk.c   23.238      9.276   2.505  0.01335 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18 on 145 degrees of freedom
## Multiple R-squared:  0.271,  Adjusted R-squared:  0.261 
## F-statistic: 26.95 on 2 and 145 DF,  p-value: 1.116e-10mod4e_adjrsq <- summary(mod4e)$adj.r.squared
mod4e_beta1 <- summary(mod4e)$coefficients[2]
mod4e_beta2 <- summary(mod4e)$coefficients[3]Fit regression model:
mod4f <- lm(physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c + I(panaspos_c_mean_4wk.c*panaspos_c_shannon_4wk.c),
           data = zautra2)
summary(mod4f)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c + 
##     I(panaspos_c_mean_4wk.c * panaspos_c_shannon_4wk.c), data = zautra2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.552  -7.430   3.672  11.083  42.548 
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           77.511      1.987
## panaspos_c_mean_4wk.c                                  8.382      3.392
## panaspos_c_shannon_4wk.c                              32.315     24.074
## I(panaspos_c_mean_4wk.c * panaspos_c_shannon_4wk.c)    4.818     11.787
##                                                     t value Pr(>|t|)    
## (Intercept)                                          39.007   <2e-16 ***
## panaspos_c_mean_4wk.c                                 2.471   0.0146 *  
## panaspos_c_shannon_4wk.c                              1.342   0.1816    
## I(panaspos_c_mean_4wk.c * panaspos_c_shannon_4wk.c)   0.409   0.6833    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.05 on 144 degrees of freedom
## Multiple R-squared:  0.2719, Adjusted R-squared:  0.2567 
## F-statistic: 17.92 on 3 and 144 DF,  p-value: 6.14e-10mod4f_adjrsq <- summary(mod4f)$adj.r.squared
mod4f_beta1 <- summary(mod4f)$coefficients[2]
mod4f_beta2 <- summary(mod4f)$coefficients[3]Model fit comparisons:
anova(mod4d,mod4e); fit1 <- anova(mod4d,mod4e)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    146 49028                              
## 2    145 46995  1      2034 6.2758 0.01335 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod4e,mod4f); fit2 <- anova(mod4e,mod4f)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panaspos_c_shannon_4wk.c + 
##     I(panaspos_c_mean_4wk.c * panaspos_c_shannon_4wk.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    145 46995                           
## 2    144 46940  1    54.473 0.1671 0.6833Summary:
The adjusted \(R^2\) for
Model fit comparisons:
The beta coefficient for mean positive emotion was
The beta coefficient for positive emodiversity was
Conclusions:
Descritpives:
describe(zautra3[,c("physhealth","panasneg_c_mean_4wk","panasneg_c_gini_4wk")])##                     vars   n  mean    sd median trimmed   mad   min   max
## physhealth             1 118 75.87 21.06  82.16   78.74 17.19 12.06 100.0
## panasneg_c_mean_4wk    2 118  1.79  0.65   1.60    1.69  0.59  1.10   3.9
## panasneg_c_gini_4wk    3 118  0.45  0.24   0.44    0.44  0.26  0.10   1.0
##                     range  skew kurtosis   se
## physhealth          87.94 -1.16     0.68 1.94
## panasneg_c_mean_4wk  2.80  1.38     1.60 0.06
## panasneg_c_gini_4wk  0.90  0.30    -0.74 0.02Plot bivariate associations:
pairs.panels(zautra3[,c("physhealth","panasneg_c_mean_4wk","panasneg_c_gini_4wk")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod5a <- lm(physhealth ~ panasneg_c_mean_4wk.c,
           data = zautra3)
summary(mod5a)## 
## Call:
## lm(formula = physhealth ~ panasneg_c_mean_4wk.c, data = zautra3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.215 -11.680   3.735  12.938  37.955 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             75.870      1.721  44.092  < 2e-16 ***
## panasneg_c_mean_4wk.c  -15.232      2.671  -5.703 9.15e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.69 on 116 degrees of freedom
## Multiple R-squared:  0.219,  Adjusted R-squared:  0.2122 
## F-statistic: 32.52 on 1 and 116 DF,  p-value: 9.153e-08mod5a_adjrsq <- summary(mod5a)$adj.r.squared
mod5a_beta1 <- summary(mod5a)$coefficients[2]Fit regression model:
mod5b <- lm(physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c,
           data = zautra3)
summary(mod5b)## 
## Call:
## lm(formula = physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c, 
##     data = zautra3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.681 -10.956   3.567  14.142  40.706 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             75.870      1.705  44.505  < 2e-16 ***
## panasneg_c_mean_4wk.c  -20.848      4.112  -5.070 1.54e-06 ***
## panasneg_c_gini_4wk.c   19.547     10.955   1.784    0.077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.52 on 115 degrees of freedom
## Multiple R-squared:   0.24,  Adjusted R-squared:  0.2268 
## F-statistic: 18.16 on 2 and 115 DF,  p-value: 1.403e-07mod5b_adjrsq <- summary(mod5b)$adj.r.squared
mod5b_beta1 <- summary(mod5b)$coefficients[2]
mod5b_beta2 <- summary(mod5b)$coefficients[3]Fit regression model:
mod5c <- lm(physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c + I(panasneg_c_mean_4wk.c*panasneg_c_gini_4wk.c),
           data = zautra3)
summary(mod5c)## 
## Call:
## lm(formula = physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c + 
##     I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c), data = zautra3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.125 -10.431   4.401  13.224  39.074 
## 
## Coefficients:
##                                                  Estimate Std. Error
## (Intercept)                                        76.978      2.359
## panasneg_c_mean_4wk.c                             -18.346      5.519
## panasneg_c_gini_4wk.c                              15.537     12.458
## I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c)   -9.299     13.646
##                                                  t value Pr(>|t|)    
## (Intercept)                                       32.629  < 2e-16 ***
## panasneg_c_mean_4wk.c                             -3.324  0.00119 ** 
## panasneg_c_gini_4wk.c                              1.247  0.21492    
## I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c)  -0.681  0.49696    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.56 on 114 degrees of freedom
## Multiple R-squared:  0.2431, Adjusted R-squared:  0.2232 
## F-statistic:  12.2 on 3 and 114 DF,  p-value: 5.536e-07mod5c_adjrsq <- summary(mod5c)$adj.r.squared
mod5c_beta1 <- summary(mod5c)$coefficients[2]
mod5c_beta2 <- summary(mod5c)$coefficients[3]Model fit comparisons:
anova(mod5a,mod5b); fit1 <- anova(mod5a,mod5b)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panasneg_c_mean_4wk.c
## Model 2: physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)  
## 1    116 40528                             
## 2    115 39437  1    1091.8 3.1839  0.077 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod5b,mod5c); fit2 <- anova(mod5b,mod5c)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c
## Model 2: physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_gini_4wk.c + 
##     I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    115 39437                           
## 2    114 39277  1       160 0.4644  0.497Summary:
The adjusted \(R^2\) for
Model fit comparisons:
The beta coefficient for mean negative emotion was
The beta coefficient for negative emodiversity was
Conclusions:
Descritpives:
describe(zautra3[,c("physhealth","panasneg_c_mean_4wk","panasneg_c_shannon_4wk")])##                        vars   n  mean    sd median trimmed   mad   min
## physhealth                1 118 75.87 21.06  82.16   78.74 17.19 12.06
## panasneg_c_mean_4wk       2 118  1.79  0.65   1.60    1.69  0.59  1.10
## panasneg_c_shannon_4wk    3 118  1.38  0.70   1.59    1.44  0.66  0.00
##                          max range  skew kurtosis   se
## physhealth             100.0 87.94 -1.16     0.68 1.94
## panasneg_c_mean_4wk      3.9  2.80  1.38     1.60 0.06
## panasneg_c_shannon_4wk   2.3  2.30 -0.76    -0.51 0.06Plot bivariate associations:
pairs.panels(zautra3[,c("physhealth","panasneg_c_mean_4wk","panasneg_c_shannon_4wk")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod5d <- lm(physhealth ~ panasneg_c_mean_4wk.c,
           data = zautra3)
summary(mod5d)## 
## Call:
## lm(formula = physhealth ~ panasneg_c_mean_4wk.c, data = zautra3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.215 -11.680   3.735  12.938  37.955 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             75.870      1.721  44.092  < 2e-16 ***
## panasneg_c_mean_4wk.c  -15.232      2.671  -5.703 9.15e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.69 on 116 degrees of freedom
## Multiple R-squared:  0.219,  Adjusted R-squared:  0.2122 
## F-statistic: 32.52 on 1 and 116 DF,  p-value: 9.153e-08mod5d_adjrsq <- summary(mod5d)$adj.r.squared
mod5d_beta1 <- summary(mod5d)$coefficients[2]Fit regression model:
mod5e <- lm(physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c,
           data = zautra3)
summary(mod5e)## 
## Call:
## lm(formula = physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c, 
##     data = zautra3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.751 -11.301   4.211  13.493  40.011 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                75.870      1.714  44.270  < 2e-16 ***
## panasneg_c_mean_4wk.c     -19.339      3.973  -4.867 3.64e-06 ***
## panasneg_c_shannon_4wk.c    5.089      3.657   1.392    0.167    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.62 on 115 degrees of freedom
## Multiple R-squared:  0.2319, Adjusted R-squared:  0.2185 
## F-statistic: 17.36 on 2 and 115 DF,  p-value: 2.582e-07mod5e_adjrsq <- summary(mod5e)$adj.r.squared
mod5e_beta1 <- summary(mod5e)$coefficients[2]
mod5e_beta2 <- summary(mod5e)$coefficients[3]Fit regression model:
mod5f <- lm(physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c + 
                I(panasneg_c_mean_4wk.c*panasneg_c_shannon_4wk.c),
           data = zautra3)
summary(mod5f)## 
## Call:
## lm(formula = physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c + 
##     I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c), data = zautra3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.247 -10.998   3.984  13.435  39.047 
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           76.516      3.475
## panasneg_c_mean_4wk.c                                -17.640      8.888
## panasneg_c_shannon_4wk.c                               3.636      7.721
## I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c)   -1.929      9.016
##                                                     t value Pr(>|t|)    
## (Intercept)                                          22.017   <2e-16 ***
## panasneg_c_mean_4wk.c                                -1.985   0.0496 *  
## panasneg_c_shannon_4wk.c                              0.471   0.6386    
## I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c)  -0.214   0.8310    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.69 on 114 degrees of freedom
## Multiple R-squared:  0.2322, Adjusted R-squared:  0.212 
## F-statistic: 11.49 on 3 and 114 DF,  p-value: 1.223e-06mod5f_adjrsq <- summary(mod5f)$adj.r.squared
mod5f_beta1 <- summary(mod5f)$coefficients[2]
mod5f_beta2 <- summary(mod5f)$coefficients[3]Model fit comparisons:
anova(mod5d,mod5e); fit1 <- anova(mod5d,mod5e)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panasneg_c_mean_4wk.c
## Model 2: physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    116 40528                           
## 2    115 39857  1    671.15 1.9365 0.1667anova(mod5e,mod5f); fit2 <- anova(mod5e,mod5f)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c
## Model 2: physhealth ~ panasneg_c_mean_4wk.c + panasneg_c_shannon_4wk.c + 
##     I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    115 39857                           
## 2    114 39841  1    15.999 0.0458  0.831Summary:
The adjusted \(R^2\) for
Model fit comparisons:
The beta coefficient for mean negative emotion was
The beta coefficient for negative emodiversity was
Conclusions:
Descritpives:
describe(zautra4[,c("physhealth","panaspos_c_mean_4wk","panasneg_c_mean_4wk",
                       "panaspos_c_gini_4wk","panasneg_c_gini_4wk")])##                     vars   n  mean    sd median trimmed   mad   min   max
## physhealth             1 117 75.69 21.06  82.06   78.55 16.96 12.06 100.0
## panaspos_c_mean_4wk    2 117  3.38  0.72   3.60    3.44  0.59  1.30   4.8
## panasneg_c_mean_4wk    3 117  1.79  0.65   1.60    1.69  0.59  1.10   3.9
## panaspos_c_gini_4wk    4 117  0.82  0.15   0.88    0.85  0.08  0.17   1.0
## panasneg_c_gini_4wk    5 117  0.45  0.24   0.43    0.44  0.27  0.10   1.0
##                     range  skew kurtosis   se
## physhealth          87.94 -1.15     0.67 1.95
## panaspos_c_mean_4wk  3.50 -0.75     0.27 0.07
## panasneg_c_mean_4wk  2.80  1.38     1.58 0.06
## panaspos_c_gini_4wk  0.83 -1.94     4.17 0.01
## panasneg_c_gini_4wk  0.90  0.28    -0.77 0.02Plot bivariate associations:
pairs.panels(zautra4[,c("physhealth","panaspos_c_mean_4wk","panasneg_c_mean_4wk",
                       "panaspos_c_gini_4wk","panasneg_c_gini_4wk")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod6a <- lm(physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c,
           data = zautra4)
summary(mod6a)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c, 
##     data = zautra4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.205  -8.728   3.563  11.781  38.357 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             75.691      1.641  46.120  < 2e-16 ***
## panaspos_c_mean_4wk.c    9.429      2.641   3.571 0.000522 ***
## panasneg_c_mean_4wk.c  -10.218      2.915  -3.505 0.000653 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.75 on 114 degrees of freedom
## Multiple R-squared:  0.3018, Adjusted R-squared:  0.2895 
## F-statistic: 24.63 on 2 and 114 DF,  p-value: 1.284e-09mod6a_adjrsq <- summary(mod6a)$adj.r.squared
mod6a_beta1 <- summary(mod6a)$coefficients[2]
mod6a_beta2 <- summary(mod6a)$coefficients[3]Fit regression model:
mod6b <- lm(physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + panaspos_c_gini_4wk.c + 
                panasneg_c_gini_4wk.c,
           data = zautra4)
summary(mod6b)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_gini_4wk.c + panasneg_c_gini_4wk.c, data = zautra4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.011  -7.490   3.037  11.217  43.832 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             75.691      1.617  46.806  < 2e-16 ***
## panaspos_c_mean_4wk.c    3.801      3.793   1.002  0.31854    
## panasneg_c_mean_4wk.c  -12.700      4.381  -2.899  0.00451 ** 
## panaspos_c_gini_4wk.c   34.038     17.461   1.949  0.05375 .  
## panasneg_c_gini_4wk.c    8.959     11.128   0.805  0.42246    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.49 on 112 degrees of freedom
## Multiple R-squared:  0.3339, Adjusted R-squared:  0.3102 
## F-statistic: 14.04 on 4 and 112 DF,  p-value: 2.576e-09mod6b_adjrsq <- summary(mod6b)$adj.r.squared
mod6b_beta1 <- summary(mod6b)$coefficients[2]
mod6b_beta2 <- summary(mod6b)$coefficients[3]
mod6b_beta3 <- summary(mod6b)$coefficients[4]
mod6b_beta4 <- summary(mod6b)$coefficients[5]Fit regression model:
mod6c <- lm(physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + panaspos_c_gini_4wk.c + 
                panasneg_c_gini_4wk.c + I(panaspos_c_mean_4wk.c*panaspos_c_gini_4wk.c) + 
                I(panasneg_c_mean_4wk.c*panasneg_c_gini_4wk.c),
           data = zautra4)
summary(mod6c)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_gini_4wk.c + panasneg_c_gini_4wk.c + I(panaspos_c_mean_4wk.c * 
##     panaspos_c_gini_4wk.c) + I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c), 
##     data = zautra4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.898  -7.282   2.564  11.063  39.298 
## 
## Coefficients:
##                                                  Estimate Std. Error
## (Intercept)                                       77.7140     2.4694
## panaspos_c_mean_4wk.c                              3.1556     3.9143
## panasneg_c_mean_4wk.c                             -6.9998     5.9154
## panaspos_c_gini_4wk.c                             42.1182    24.5351
## panasneg_c_gini_4wk.c                             -0.4403    12.9290
## I(panaspos_c_mean_4wk.c * panaspos_c_gini_4wk.c)   3.0240    13.6168
## I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c) -19.0626    13.2344
##                                                  t value Pr(>|t|)    
## (Intercept)                                       31.471   <2e-16 ***
## panaspos_c_mean_4wk.c                              0.806   0.4219    
## panasneg_c_mean_4wk.c                             -1.183   0.2392    
## panaspos_c_gini_4wk.c                              1.717   0.0889 .  
## panasneg_c_gini_4wk.c                             -0.034   0.9729    
## I(panaspos_c_mean_4wk.c * panaspos_c_gini_4wk.c)   0.222   0.8247    
## I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c)  -1.440   0.1526    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.49 on 110 degrees of freedom
## Multiple R-squared:  0.3464, Adjusted R-squared:  0.3107 
## F-statistic: 9.714 on 6 and 110 DF,  p-value: 1.43e-08mod6c_adjrsq <- summary(mod6c)$adj.r.squared
mod6c_beta1 <- summary(mod6c)$coefficients[2]
mod6c_beta2 <- summary(mod6c)$coefficients[3]
mod6c_beta3 <- summary(mod6c)$coefficients[4]
mod6c_beta4 <- summary(mod6c)$coefficients[5]Model fit comparisons:
anova(mod6a,mod6b); fit1 <- anova(mod6a,mod6b)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_gini_4wk.c + panasneg_c_gini_4wk.c
##   Res.Df   RSS Df Sum of Sq     F  Pr(>F)  
## 1    114 35925                             
## 2    112 34268  2    1656.5 2.707 0.07111 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod6b,mod6c); fit2 <- anova(mod6b,mod6c)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_gini_4wk.c + panasneg_c_gini_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_gini_4wk.c + panasneg_c_gini_4wk.c + I(panaspos_c_mean_4wk.c * 
##     panaspos_c_gini_4wk.c) + I(panasneg_c_mean_4wk.c * panasneg_c_gini_4wk.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    112 34268                           
## 2    110 33630  2    638.04 1.0435 0.3557Summary and conclusions: This additional set of analyses is given to more closely match what was reported in Benson, Ram, Almeida, Zautra, & Ong, 2017 (with the exception here that the Benson et al., 2017 paper did not report any regression results using the single occassion emotion item data). These results echo what was reported in the model 4 series (a, b, c) and model 5 series (a, b, c). The model fit comparisons suggests that mod6a (just mean positive emotion and mean negative emotion) provides the best/ most parsimonious fit to these data.
Descritpives:
describe(zautra4[,c("physhealth","panaspos_c_mean_4wk","panasneg_c_mean_4wk",
                       "panaspos_c_shannon_4wk","panasneg_c_shannon_4wk")])##                        vars   n  mean    sd median trimmed   mad   min
## physhealth                1 117 75.69 21.06  82.06   78.55 16.96 12.06
## panaspos_c_mean_4wk       2 117  3.38  0.72   3.60    3.44  0.59  1.30
## panasneg_c_mean_4wk       3 117  1.79  0.65   1.60    1.69  0.59  1.10
## panaspos_c_shannon_4wk    4 117  2.18  0.24   2.26    2.24  0.04  0.64
## panasneg_c_shannon_4wk    5 117  1.37  0.70   1.56    1.43  0.69  0.00
##                          max range  skew kurtosis   se
## physhealth             100.0 87.94 -1.15     0.67 1.95
## panaspos_c_mean_4wk      4.8  3.50 -0.75     0.27 0.07
## panasneg_c_mean_4wk      3.9  2.80  1.38     1.58 0.06
## panaspos_c_shannon_4wk   2.3  1.67 -3.85    17.84 0.02
## panasneg_c_shannon_4wk   2.3  2.30 -0.76    -0.51 0.06Plot bivariate associations:
pairs.panels(zautra4[,c("physhealth","panaspos_c_mean_4wk","panasneg_c_mean_4wk",
                       "panaspos_c_shannon_4wk","panasneg_c_shannon_4wk")], 
             lm = TRUE, hist = "gray")Fit regression model:
mod6d <- lm(physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c,
           data = zautra4)
summary(mod6d)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c, 
##     data = zautra4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.205  -8.728   3.563  11.781  38.357 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             75.691      1.641  46.120  < 2e-16 ***
## panaspos_c_mean_4wk.c    9.429      2.641   3.571 0.000522 ***
## panasneg_c_mean_4wk.c  -10.218      2.915  -3.505 0.000653 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.75 on 114 degrees of freedom
## Multiple R-squared:  0.3018, Adjusted R-squared:  0.2895 
## F-statistic: 24.63 on 2 and 114 DF,  p-value: 1.284e-09mod6d_adjrsq <- summary(mod6d)$adj.r.squared
mod6d_beta1 <- summary(mod6d)$coefficients[2]
mod6d_beta2 <- summary(mod6d)$coefficients[3]Fit regression model:
mod6e <- lm(physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + panaspos_c_shannon_4wk.c + panasneg_c_shannon_4wk.c,
           data = zautra4)
summary(mod6e)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_shannon_4wk.c + panasneg_c_shannon_4wk.c, data = zautra4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.141  -7.729   3.210  11.557  42.881 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                75.691      1.620  46.730  < 2e-16 ***
## panaspos_c_mean_4wk.c       4.966      3.407   1.458  0.14774    
## panasneg_c_mean_4wk.c     -12.070      4.124  -2.927  0.00414 ** 
## panaspos_c_shannon_4wk.c   19.138      9.740   1.965  0.05191 .  
## panasneg_c_shannon_4wk.c    2.521      3.544   0.711  0.47843    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.52 on 112 degrees of freedom
## Multiple R-squared:  0.3318, Adjusted R-squared:  0.3079 
## F-statistic:  13.9 on 4 and 112 DF,  p-value: 3.068e-09mod6e_adjrsq <- summary(mod6e)$adj.r.squared
mod6e_beta1 <- summary(mod6e)$coefficients[2]
mod6e_beta2 <- summary(mod6e)$coefficients[3]
mod6e_beta3 <- summary(mod6e)$coefficients[4]
mod6e_beta4 <- summary(mod6e)$coefficients[5]Fit regression model:
mod6f <- lm(physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + panaspos_c_shannon_4wk.c + 
                panasneg_c_shannon_4wk.c + I(panaspos_c_mean_4wk.c*panaspos_c_shannon_4wk.c) + 
                I(panasneg_c_mean_4wk.c*panasneg_c_shannon_4wk.c),
           data = zautra4)
summary(mod6f)## 
## Call:
## lm(formula = physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_shannon_4wk.c + panasneg_c_shannon_4wk.c + I(panaspos_c_mean_4wk.c * 
##     panaspos_c_shannon_4wk.c) + I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c), 
##     data = zautra4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.893  -7.408   2.158  10.979  40.148 
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           77.208      3.652
## panaspos_c_mean_4wk.c                                  3.257      4.009
## panasneg_c_mean_4wk.c                                 -4.582      8.986
## panaspos_c_shannon_4wk.c                              38.204     25.694
## panasneg_c_shannon_4wk.c                              -3.892      7.625
## I(panaspos_c_mean_4wk.c * panaspos_c_shannon_4wk.c)    9.733     12.885
## I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c)   -7.952      8.702
##                                                     t value Pr(>|t|)    
## (Intercept)                                          21.140   <2e-16 ***
## panaspos_c_mean_4wk.c                                 0.812    0.418    
## panasneg_c_mean_4wk.c                                -0.510    0.611    
## panaspos_c_shannon_4wk.c                              1.487    0.140    
## panasneg_c_shannon_4wk.c                             -0.510    0.611    
## I(panaspos_c_mean_4wk.c * panaspos_c_shannon_4wk.c)   0.755    0.452    
## I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c)  -0.914    0.363    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.57 on 110 degrees of freedom
## Multiple R-squared:  0.3401, Adjusted R-squared:  0.3041 
## F-statistic: 9.447 on 6 and 110 DF,  p-value: 2.34e-08mod6f_adjrsq <- summary(mod6f)$adj.r.squared
mod6f_beta1 <- summary(mod6f)$coefficients[2]
mod6f_beta2 <- summary(mod6f)$coefficients[3]
mod6f_beta3 <- summary(mod6f)$coefficients[4]
mod6f_beta4 <- summary(mod6f)$coefficients[5]Model fit comparisons:
anova(mod6d,mod6e); fit1 <- anova(mod6d,mod6e)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_shannon_4wk.c + panasneg_c_shannon_4wk.c
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    114 35925                              
## 2    112 34380  2    1545.4 2.5173 0.08523 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(mod6e,mod6f); fit2 <- anova(mod6e,mod6f)[6][[2,1]]## Analysis of Variance Table
## 
## Model 1: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_shannon_4wk.c + panasneg_c_shannon_4wk.c
## Model 2: physhealth ~ panaspos_c_mean_4wk.c + panasneg_c_mean_4wk.c + 
##     panaspos_c_shannon_4wk.c + panasneg_c_shannon_4wk.c + I(panaspos_c_mean_4wk.c * 
##     panaspos_c_shannon_4wk.c) + I(panasneg_c_mean_4wk.c * panasneg_c_shannon_4wk.c)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    112 34380                           
## 2    110 33955  2    424.99 0.6884 0.5045Summary and conclusions: This additional set of analyses is given to more closely match what was reported in Benson, Ram, Almeida, Zautra, & Ong, 2017 (with the exception here that the Benson et al., 2017 paper did not report any regression results using the single occassion emotion item data). These results echo what was reported in the model 4 series (d, e, f) and model 5 series (d, e, f). The model fit comparisons suggests that mod6d (just mean positive emotion and mean negative emotion) provides the best/ most parsimonious fit to these data.