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A longitudinal common factor model from 
Jöreskog & Sörbom (1975)
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1. Structural Basis 
of the Common Factor Model
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Basic definitions of “factor analysis”
• Factor analysis

– computational techniques widely use in research on 
individual differences

– a mathematical model used to express observations 
in terms of latent variables

• Factors 
– theoretical / hypothetical constructs
– enable testing rejectable hypotheses about empirical 

data (i.e., enable science of individual differences)
– are “functional unities” that may be correlated (after 

Thurstone, 1947; Cattell, 1966; Horn, 1972)
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Exploratory Factor Analysis (EFA)
• Much can be learned by first using standard 

techniques in exploratory factor analysis (EFA).

• EFA may find any initial problems with data, 
and this is often the case.

• EFA can be used to establish a boundary 
conditions about likely the number of common 
factors, and this can save a lot of time later.

• Advanced techniques in EFA can be so close to 
the final restrictions desired that no further 
analyses may be necessary.
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Structural Factor Analysis
• Standard techniques in confirmatory factor 

analysis (CFA) are also often very informative. 

• If explicit point hypotheses not stated a priori, 
we use term structural factor analysis (SFA).

• SFA analyses can test explicit hypotheses about 
the likely number of common factors, with 
precise estimation and resulting statistical tests.

• SFA can test precise restrictions in a longitudinal 
model – including unique factor covariances and 
invariance of loadings, intercepts, etc.
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Structural Factor Analysis (SFA) Expectations

• Factor models imply expectations in means and 
covariances

• Factor models can be distinguished by their 
patterned expectations

• Figural models are isomorphic with (usually 
linear) factor model representations of variables

• A little matrix algebra and expectation operators 
can make clear distinctions among models

• Assume the presence of 4 manifest variables …
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Fundamental Equation of EFA, SFA

• Linear model underlying factor analysis

1 1 2 2j i j j i j i j iY f f      

• where
– Yji = score of person i on manifest variable j
– τj = intercept for manifest variable j
– λj1 , λj2 = loading of variable j on Factors 1 & 2
– f1i , f2i = scores of person i on Factors 1 & 2
– εji = score of person i on unique factor for manifest 

variable j
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SFA Expectations: 1 Factor
• Collect linear model for 4 manifest variables, 1 factor

• Rewrite compactly

• Take expectations to represent means
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SFA Covariance Expectations
• If y is vector of manifest variables in mean deviation 

form, taking expectations for covariances we get:
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SFA Covariance Expectations: 1 Factor
• Given the above, what are expectations for covariances?
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SFA Covariance Expectations: 1 Factor
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• Additional constraints are needed to obtain a 
unique set of estimates. The latent variable has no 
meaningful absolute scale, so we assume it has a 
mean of 0.0 and variance E{f, f}=f 

2 =1.0
• After this scaling, each covariance is simply a 

product of the pairs of loadings: 
E{(i,j)} = (i) . (j)

• We could achieve identification by setting the 
factor variance E{f, f}=1/2 or 25 or any positive 
constant, or by setting at least one loading equal 
to some constant ((i) =1). Different choices alter 
the estimates, but not the fit of the model to data.

SFA Covariance Expectations: General
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SFA Covariance Expectations: 1 Factor
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• So, if ψ11 is fixed at 1.0 for identification

Note: Each covariance ij expectation follow a simple pattern 
determined by the product of the respective loadings i and j.
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SFA Covariance Expectations: 2 Factors
• What are expectations for covariances based on 2 factors?
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SFA Covariance Expectations: 2 Factors
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Same as covariance 
expectations for 1 
factor model – except 
addition of ψ21 to four 
covariances. If ψ21
nears 1.0, becomes 
hard to tell 1 factor 
model from 2 factor 
model
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• Having derived mean and covariance expectations, we 
can now consider 3 alternative models that might fit 
covariances among 4 manifest variables:
• 0 factor model
• 1 factor model
• 2 factor restricted model

SFA Models
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A path diagram of a no factor model

14 statistics –
8 estimates (or
4 intercepts +
4 unique vars)

= 6 df
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SFA Covariance Expectations: 0 Factor

11

22

33

44

0
0 0
0 0 0







 
 
 
 
 
  

Σ

symm

• All factor loadings are 0, so 0 factor baseline model has 
following expectations

Note: Reproduces variance of each manifest variable, but covariances 
of 0 between manifest variables because common factor is absent
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A path diagram of a one factor model

14 statistics –
12 estimates (or

4 intercepts +
4 loadings   +
4 unique vars)

= 2 df
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SFA Covariance Expectations: 1 Factor
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Note: Each covariance ij expectation follow a simple pattern 
determined by the product of the respective loadings i and j.
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A path diagram of two factor model

14 statistics –
13 estimates (or

4 intercepts    +
4 loadings      +
4 unique vars +
1 factor corr)

= 1 df
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SFA Covariance Expectations: 2 Factors
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Goodness of Fit of a Common Factor Model
• Many tests/indices of fit (Lawley & Maxwell, 1971; 

Browne, 1985; Browne & Cudeck, 1993). 
• If we calculate the parameters based on the principle of 

maximum likelihood estimation (MLE) we obtain a 
likelihood ratio statistic (L) of “misfit.”

• Under standard assumptions (e.g., normality of the 
residuals) L follows a  distribution with df=Ns-Np.

• We use Ltype tests to ask: “Should we reject the 
hypothesis of local independence | k-common factors.” 

• Often we rephrase this: “Are the observed data 
consistent with the hypothetical model?”or “Is the 
model plausible?” Or simply: “Does the model fit?”
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Confirmatory Factor Analysis Hypotheses
• If restrictions are stated prior to estimation then we can 

use statistical probability models.
• These models have large numbers of degrees-of-

freedom and are rejectable -- we examine overall fit, 
standard errors, and residuals.

• We need to examine most restrictions via the 
comparison of at least two alternative models. 

• We do not conclude the model fits the data, but we can 
conclude the model does not fit the data, or that one 
model fits better than another.

• We might be better off considering a wide range of 
models and judge the relative fit of each.
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Nested models and difference tests
• The well-known use of a hierarchy of 

restrictions makes it easy to use statistical 
probability tests.

• Two alternative models are said to be “nested” 
if parameters that are included in one model 
(M2) can be are “removed” to form the 
alternative model (M1).

• Iff Model 1 is nested in Model 2, we can use 
standard statistical difference tests 

ΔL2 = L2(1) - L2(2) 
follows a chi-square distribution with 

Δdf = df(1) - df(2)
28

Parsimony versus Good Fit
• “Which model(s) should be considered a reasonable fit to 

data?” – This is a well-known, complex question.
• Want parsimonious model with few parameter estimates
• Fit indices help us do this:

– Likelihood ratio chi-square
– Information indices: Akaike IC (AIC), Bayesian IC (BIC is 

Better)
– Relative fit indices: Relative Noncentrality Index (RNI) (also 

called Comparative Fit Index (CFI), and the Tucker-Lewis Index 
(TLI)

– Absolute fit indices: RMSEA & its confidence interval
– Prefer indices with correction for model complexity – especially 

BIC, TLI, and RMSEA
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Relative Goodness of Fit in Factor Analysis

• Goodness-of-fit is relative to data at hand --
comparisons within a data set are informative.

• Absolute rules for goodness-of-fit indices are 
useful (but wrong) – i.e., “non-significant 2,” 
or “smallest AIC” or “RMSEA < .05”!

• “Factors in a factor analysis are not things, but 
they are our evidence for the existence of 
things.” (R.B. Cattell, 1950).

• Substantive knowledge is always needed.
30

2: Two Examples of Common 
Factor Modeling
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From McArdle & Nesselroade (1994)

• WISC-R data on N=204 children repeatedly 
measured at ages 6 and 11.

• Variables chosen for analysis are all from the 
“Verbal” scales of the WISC at age 6 
– 1. Information 
– 2. Similarities 
– 3. Comprehension 
– 4. Vocabulary

• Common factor models were fitted to test 
various factor analytic hypotheses.
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WISC sample statistics (age 6)

MEAN       19.776      20.396     21.797      14.903
STD         6.119     6.292    9.742        7.56

Pearson Correlation Coefficients, N = 204

info_06     voca_06     comp_06    simi_06

info_06     1.000 

voca_06     0.556       1.000

comp_06   0.509       0.584      1.000

simi_06    0.540       0.437      0.449       1.000
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TITLE: V subtests: 1 Factor model  
DATA: FILE = rto8age2.dat;
VARIABLE: NAMES =  ID moeducat age_06 info_06 comp_06 simi_06 voca_06 

picc_06 pica_06 bloc_06 obje_06  age_11 info_11 comp_11
simi_11 voca_11 picc_11 pica_11 bloc_11 obje_11;
USEVAR = 
info_06 voca_06 comp_06 simi_06 ;

ANALYSIS: TYPE=MEANSTRUCTURE; ITERATIONS=10000;
MODEL: !Loadings of Manifest on Latent Variables (L = loadings)

Vc_06 BY info_06 *(L1)
voca_06  (L2)
comp_06  (L3) 
simi_06  (L4) ;

!Intercepts (or taus) of Manifest Variables (I = intercepts)
[info_06 voca_06 comp_06 simi_06];
!Unique variances and covariances (U = intercepts)
info_06 voca_06 comp_06 simi_06 ;
!Latent variable means (A = alpha)
[Vc_06@0];
!Latent variable variances and covariances (P = psi)
Vc_06@1;

!Latent variable regressions (B = beta)

OUTPUT: SAMPSTAT STANDARDIZED RESIDUAL tech1;

Mplus program: 1 factor model
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M+ output of common factor model
TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value                              7.147
Degrees of Freedom                     2
P-Value                           0.0274  P{perfect fit}

Chi-Square Test of Model Fit for the Baseline Model
Value                            261.106
Degrees of Freedom                     6
P-Value                           0.0000

CFI/TLI   CFI                                0.980
TLI                                0.939

Loglikelihood
H0 Value                       -2650.669
H1 Value                       -2647.095

Information Criteria
Number of Free Parameters             12
Akaike (AIC)                    5325.338
Bayesian (BIC)                  5365.155

...
RMSEA (Root Mean Square Error Of Approximation)

Estimate                           0.112
90 Percent C.I.                    0.032  0.206
Probability RMSEA <= .05           0.088  P{close fit}

SRMR (Standardized Root Mean Square Residual)
Value                              0.025
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Misfit of common factor model
ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

Model Estimated Means/Intercepts/Thresholds
INFO6         COMP6         SIMI6         VOCA6
________      ________      ________      ________

1        19.776        21.797        14.903        20.396
Residuals for Means/Intercepts/Thresholds

INFO6         COMP6         SIMI6         VOCA6
________      ________      ________      ________

1         0.000         0.000         0.000         0.000

Model Estimated Covariances/Correlations/Residual Correlations
INFO6         COMP6         SIMI6         VOCA6
________      ________      ________      ________

INFO6         37.261
COMP6         32.128        94.434
SIMI6         22.189        33.963        56.881
VOCA6         21.598        33.058        22.831        39.390

Residuals for Covariances/Correlations/Residual Correlations
INFO6         COMP6         SIMI6         VOCA6
________      ________      ________      ________

INFO6          0.000
COMP6         -1.952         0.000
SIMI6          2.680        -1.076         0.000
VOCA6         -0.313         2.569        -2.140         0.000
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M+ output of common factor model
MODEL RESULTS                                  Two-Tailed  Standard

Estimate       S.E.  Est./S.E.    P-Value     Estimate
VC_06    BY

INFO_06        4.582      0.412     11.112      0.000        0.751
VOCA_06     4.714      0.421     11.192      0.000 0.751
COMP_06     7.013      0.659     10.642      0.000 0.722
SIMI_06      4.843      0.527      9.190      0.000 0.642

Means
VC_06          0.000      0.000    999.000    999.000        0.000

Intercepts
INFO_06       19.776      0.427     46.273      0.000        3.240
VOCA_06    20.396      0.439     46.416      0.000        3.250
COMP_06   21.797      0.680     32.036      0.000        2.243
SIMI_06    14.903      0.528     28.224      0.000        1.976

Variances
VC_06          1.000      0.000    999.000    999.000        1.000

Residual Variances
INFO_06       16.271      2.419      6.725      0.000        0.437
VOCA_06    17.167      2.517      6.820      0.000        0.436
COMP_06   45.258      6.176      7.328      0.000  0.479
SIMI_06     33.426      4.030      8.293      0.000        0.588
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Alternative Factor Models for Verbal Tests
WISC Verbal Tests Tests 0 Factors 1 Factor

Raw λ [std λ]
2 Factors

Raw λ [std λ]

Factor Loadings on
Factor 1 (Vc)

IN
VO
CO
SI

---
---
---
---

4.58  [.75]
4.71  [.75]
7.01  [.72]
4.84  [.64]

4.55  [.75]
4.68  [.75]
0.00* [.00]
0.00* [.00]

Factor Loadings on 
Factor 2 (Vr)

IN
VO
CO
SI

---
---
---
---

---
---
---
---

0.00* [.00]
0.00* [.00]
6.88  [.71]
4.78  [.63]

Factor 1 Var
Factor 2 Var

---
---

1.00*
----

1.00*
1.00*

Factor covariance --- ---- 1.04

2 / df fit 261.1 / 6 7.2 / 2 6.8 / 1

2 / df change --- 253.9 / 4 0.4 / 1

CFI / TLI .000/.000 .980/.939 .977/.863

RMSEA(CI) .457
(.410,.505)

.112
(.032,.206)

.169
(.067,.298) 38

Optimal Model WISC Verbal: 1 factor

Single common factor –
represents Verbal 
Comprehension (or Gc)
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Example 2: Gc-Gf example

• Same WISC-R data on N=204 children 
repeatedly measured at ages 6 and 11.

• Variables chosen for analysis from age 6, but 2 
Verbal tests and 2 Performance tests 
– 1. Comprehension      (Vc or Gc)
– 2. Vocabulary             (Vc or Gc)
– 3. Block Design          (P or Gf)
– 4. Object Assembly    (P or Gf)

• Common factor models were fitted to test 
various factor analytic hypotheses.
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WISC sample statistics (age 6)  – Gc-Gf example

Pearson Correlation Coefficients, N = 204

comp_06   voca_06    bloc_06   obje_06

comp_06     1.000

voca_06     0.584     1.000

bloc_06     0.324     0.385     1.000

obje_06     0.313     0.450     0.545     1.000

MEAN       21.797    20.396     6.942    25.258
STD      9.742   6.292     6.599    16.395
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Alternative Factor Models for Gc-Gf Test
WISC Verbal Tests Tests 0 Factors 1 Factor

Raw λ [std λ]
2 Factors

Raw λ [std λ]

Factor Loadings on
Factor 1 (Gc)

CO
VO
BL
OB

---
---
---
---

6.41  [.66]
4.89  [.78]
3.79  [.56]
10.1  [.62]

6.42  [.66]
5.55  [.88]
0.00* [.00]
0.00* [.00]

Factor Loadings on 
Factor 2 (Gf)

CO
VO
BL
OB

---
---
---
---

---
---
---
---

0.00* [.00]
0.00* [.00]
4.58  [.70]
12.8  [.78]

Factor 1 Var
Factor 2 Var

---
---

1.00*
----

1.00*
1.00*

Factor covariance --- ---- .64

2 / df fit 214.2 / 6 31.5 / 2 1.2 / 1

2 / df change --- 182.7: 4 30.3 / 1

CFI / TLI .000/.000 .859/.576 .999/.995

RMSEA(CI) .412
(.366,.461)

.269
(.191,.355)

.029
(.000,.191) 42

Optimal Model for Gf-Gc model: 2 factors

2 factors 
required –
Key parameter is 
correlation 
between factors 
of .64
(SE = .07),
Differs from 0,
Differs from 1!

3. Concepts of factorial 
invariance over time
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Factorial Invariance under Selection
• In a seminal series of papers, Meredith’s (1964-65) 

extended Lawley’s (1941) selection theorems to the 
common factor case and demonstrated:   
IF        (1) a factor model ’  holds in a population, 

(2) samples are selected from that population in any way,
randomly or non-randomly,

THEN  (3) the factor loadings  will remain invariant, 
(4) but the factor variances and covariances will not 

remain invariant.
• Meredith (1993) extended this to consideration of 

intercepts – and related factorial invariance to 
measurement invariance more generally
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Factorial Invariance
• Related to measurement invariance
• Test bias models (Cleary models), for G groups

– Test unbiased iff E(Y|X,G) = E(Y|X)
– E(Y|X,G) = E(Y|X) iff intercept (a) and slope (b) of 

regression of criterion on predictor are equal across 
groups, or across G groups

– Intercept: a1 = a2 = …= aG = a
– Slope: b1 = b2 = …= bG = b
– Different forms of bias can be represented as …

46

Test Bias Models
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Factorial Invariance across Time
• In factorial invariance, manifest variables Y are 

criteria, latent variables f are predictors
• Thus, in factorial invariance, across T times

– Factors are identical iff E(Y|f,T) = E(Y|f) 
– E(Y|f,T) = E(Y|f) iff intercepts (τ) and slopes (Λ) of 

regression of manifest variables on latent variables 
are equal across T times of measurement

– Intercepts: τ1 = τ2 = …= τG = τ
– Slopes: Λ1 = Λ2 = …= ΛG = Λ

• Invariance of unique variances would ensure 
entire function relating latent to manifest 
variables is invariant

Longitudinal Change SEM

• Long history of longitudinal change models.
• Included are seminal SEM work by  Jöreskog

(1971, 1974, 1977) & Sörbom (1975)
• Related to factor analytic change models of 

Nesselroade (1971, 1977) & Meredith (1990, 
1991; Meredith & Tisak, 1990)

• Widaman & Reise (1997) extended prior work 
on factorial invariance, outlining 4 levels of 
invariance

48



Types of Factor Invariance (FI)

• Configural invariance: same number of factors 
and same pattern of fixed and free loadings on 
factors at all times of measurement

• Weak FI: Configural invariance plus invariance 
of factor loadings across time – invariant Λ

• Strong FI: Weak FI plus invariance of intercepts 
across time, or invariant Λ and τ

• Strict FI: Strong FI plus invariance of unique 
variances across time, or invariant Λ, τ, and Θ

49 50

Types of Factor Invariance (FI)

• Strong FI: If Strong FI holds, same latent 
variables are found at all times of measurement; 
changes in mean and variance on latent variables 
(i.e., true scores) can be investigated

• Strict FI: If Strict FI holds, all change in mean 
and variance on manifest variables is due to 
change in mean and variance on latent variables

• Important: We must achieve strong FI to study 
change in the same factor(s) across time, and strict 
FI is certainly desirable (but not necessary)
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Testing Factor Invariance (FI)

• Configural invariance: baseline model
• Weak FI: Compare to configural invariance 

model to test invariance of factor loadings across 
time – invariant Λ

• Strong FI: Compare to Weak FI model to test 
invariance of intercepts across time, or invariant 
Λ and τ

• Strict factorial invariance: Compare to Strong 
FI model to test invariance of unique variances 
across time, or invariant Λ, τ, and Θ
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Do NOT Separately Standardize Data
• Standardization of observed scores is not desired 

because invariance is a raw score regression problem.
• If standardization is desired, it must be done using the 

same mean and standard deviation for all occasions; 
z[1]n = ( y[1]n-  / 
z[2]n = ( y[2]n-  / 

• This mean and standard deviation could come from, 
say, the time one scores for each manifest variable 

• But, as in regression, questions about “equality of 
coefficients” cannot be answered if manifest variables 
are standardized within each occasion because 
information has been lost.

• Separate standardization violates the likelihood 
equations, so tests of fit are incorrect
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4. An Example of Factorial 
Invariance over Time
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WISC Verbal scores at two occasions 
(Grades 1 and 6; N=204)
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Descriptive Statistics at T=2 Occasions
4 variables at each occasion

Variable           N          Mean       Std Dev
info6            204      19.77624       6.11922 
comp6            204      21.79683       9.74162
simi6            204      14.90326       7.56052
voca6            204      20.39630       6.29161

info11           204      48.50969      12.78670
comp11           204      45.17377      12.97263
simi11           204      41.29651      14.51801
voca11           204      44.44644      11.04631
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WISC correlations at T=2 Occasions
Pearson Correlation Coefficients, N = 204

info6   comp6   simi6   voca6  info11  comp11  simi11  voca11

info6     1.000 

comp6     0.509   1.000

simi6     0.540   0.449   1.000

voca6     0.556   0.584   0.437   1.000

info11  0.468 0.398   0.353   0.552   1.000

comp11    0.363   0.356 0.295   0.443   0.624   1.000

simi11    0.439   0.399   0.334 0.541   0.672   0.533  1.000

voca11    0.485   0.463   0.380   0.598 0.749   0.701  0.665   1.000
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Longitudinal Configural Invariance model

58

USEVAR = info_06 voca_06 comp_06 simi_06      
info_11 voca_11 comp_11 simi_11;

ANALYSIS: TYPE=MEANSTRUCTURE; ITERATIONS=10000;

MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L6)
comp_11 (L7)
simi_11 (L8) ;

!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1); [voca_06 voca_11]; 
[comp_06 comp_11];      [simi_06 simi_11]    ;  
!Unique variances and covariances (U = Unique vars)
info_06; info_11;      voca_06; voca_11;
comp_06; comp_11;      simi_06; simi_11; 

!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1; Verb_11 ;

!Regressions among latent variables (B = beta)

Partial Mplus code for Configural Invariance

59

MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L6)
comp_11 (L7)
simi_11 (L8) ;

!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1);  [voca_06 voca_11]; 
[comp_06 comp_11];      [simi_06 simi_11]    ;  
!Unique variances and covariances (U = Unique vars)
info_06; info_11;      voca_06; voca_11;
comp_06; comp_11;      simi_06; simi_11;

info_06 with info_11;  voca_06 with voca_11;
comp_06 with comp_11;  simi_06 with simi_11;
!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1;   Verb_11 ;
!Regressions among latent variables (B = beta)

Configural Invariance, plus unique covs
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MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L2)
comp_11 (L3)
simi_11 (L4) ;

!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1);  [voca_06 voca_11]; 
[comp_06 comp_11];      [simi_06 simi_11]    ;  
!Unique variances and covariances (U = Unique vars)
info_06; info_11;      voca_06; voca_11;
comp_06; comp_11;      simi_06; simi_11; 
!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1;   Verb_11;
!Regressions among latent variables (B = beta)

Partial Mplus code for WEAK FI
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MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L2)
comp_11 (L3)
simi_11 (L4) ;

!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1);  [voca_06 voca_11](I2); 
[comp_06 comp_11](I3);  [simi_06 simi_11](I4);
!Unique variances and covariances (U = Unique vars)
info_06; info_11;      voca_06; voca_11;
comp_06; comp_11;      simi_06; simi_11; 
!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1;   Verb_11;
!Regressions among latent variables (B = beta)

Partial Mplus code for STRONG FI
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MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L2)
comp_11 (L3)
simi_11 (L4) ;

!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1);  [voca_06 voca_11](I2); 
[comp_06 comp_11](I3);  [simi_06 simi_11](I4);  
!Unique variances and covariances (U = Unique vars)
info_06-info_11 (U1); voca_06-voca_11 (U2);
comp_06-comp_11 (U3);   simi_06-simi_11 (U4);
!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1;   Verb_11 ;
!Regressions among latent variables (B = beta)

Partial Mplus code for STRICT FI
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Alternative Repeated Factor SEMs
WISC Verbal
N =204, T=2 Test

1
Factor

Config.
Inv.

Weak
FI

Strong
FI

Strict
FI

Factor Loadings 
Time 1 [1]

IN
VO
CO
SI

4.69
4.76
7.08
4.89

4.45=
5.04
6.85
4.59

4.93=
4.87=
5.17=
5.07=

5.27=
4.55=
4.53=
4.96=

5.24=
4.51=
4.52=
5.03=

Factor Loadings 
Time 2 [2]

IN
VO
CO
SI

20.9
44.4
45.2
41.3

4.45=
4.10
4.01
4.55

4.93=
4.87=
5.17=
5.07=

5.27=
4.55=
4.53=
4.96=

5.24=
4.51=
4.52=
5.03=

Factor 1 Var
Factor 2 Var

1.00* 1.00*
5.83*

1.00*
4.24*

1.00*
4.56*

1.00*
4.63*

Factor cov [cor]
Factor mean [G2]

1.84[.76]
6.46

1.56[.76]
5.82

1.61[.75]
5.34

1.64[.76]
5.34

2 / df fit

Δ2 / Δdf fit

955 / 15 26 / 19

929 / 4

42 / 22

-16 / 3

54 / 25

-12 / 3

127 / 29

-73 / 4

CFI / TLI

RMSEA (CI)

.000/-.27

.427
(.40-.45)

.992/.98

.042
(.00-.08)

.976/.969 

.067
(.04-.10)

.965/.961

.075
(.04-.10)

.880/.884

.129
(.11-.15) 64

Testing Factor Invariance (FI)

• Configural invariance: baseline model
• Weak FI: Compare to configural invariance 

model to test invariance of factor loadings across 
time, Δχ2 = 16, Δdf = 3

• Strong FI: Compare to Weak FI model to test 
invariance of intercepts across time, resulting in   
Δχ2 = 12, Δdf = 3

• Strict factorial invariance: Compare to Strong 
FI model to test invariance of unique variances 
across time, Δχ2 = 73, Δdf = 4



Conclusions from longitudinal WISC analyses

• A configuration based on a single factor for Verbal 
scales fits each time point reasonably well

• A Strong FI model with invariant loadings and 
intercepts was not perfect, but fit reasonably well

• Model of exactly equivalent factor scores (i.e., 1 factor) 
did not fit well.

• So, the same Verbal ability factor “grows” in mean
and variance between ages 6 and 11.

• Growth in mean level (5.34) is a standardized effect 
size measure (i.e., Cohen’s d) given scaling of factor at 
age 6

65 66

Longitudinal STRONG FI model
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Two additional models for factor change

• Given reasonable fit of the Strong FI model, two 
additional “factor change” models can be specified

• Model 1: Autoregressive model at the factor level

• Model 2: Latent change in the latent factor

• Because both of these models have (a) the same number 
of estimates as the Strong FI model and (b) merely 
respecify the relations among latent variables, they have 
the same fit

• To specify and represent these models …
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MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L2)
comp_11 (L3)
simi_11 (L4) ;

!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1);  [voca_06 voca_11](I2); 
[comp_06 comp_11](I3);  [simi_06 simi_11](I4);  
!Unique variances and covariances (U = Unique vars)
info_06; info_11;      voca_06; voca_11;
comp_06; comp_11;      simi_06; simi_11; 
!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1;   Verb_11 ;
Verb_11 with Verb_06@0;
!Regressions among latent variables (B = beta)
Verb_11 on Verb_06;

Mplus code for Autoregressive LV Model
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Longitudinal Autoregressive Model

70

MODEL: !Loadings on Latent Variables (L = loadings)
Verb_06 BY info_06*(L1)

voca_06 (L2)
comp_06 (L3)
simi_06 (L4) ;

Verb_11 BY info_11*(L1)
voca_11 (L2)
comp_11 (L3)
simi_11 (L4) ;

dVer_11 BY Verb_11@1    ;
!Intercepts (or taus) (I = intercepts)
[info_06 info_11](I1);  [voca_06 voca_11](I2); 
[comp_06 comp_11](I3);  [simi_06 simi_11](I4);  
!Unique variances and covariances (U = Unique vars)
info_06; info_11;      voca_06; voca_11;
comp_06; comp_11;      simi_06; simi_11; 
!Latent variable means (A = alpha)
[Verb_06@0]; [Verb_11@0];  [dVer_11];
!Latent variable variances and covariances (P = psi)
Verb_06@1;   Verb_11@0;    dVer_11;
Verb_11 with Verb_06@0;
Verb_11 with dVer_11@0;  Verb_06 with dVer_11@0;
!Regressions among latent variables (B = beta)
Verb_11 on Verb_06@1;   dVer_11 on Verb_06;

Mplus code for Latent Change in LV Model
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Latent Change In Latent Variable

72

6. Summary & Discussion



Additional Comments on Factorial Invariance
• The basic ideas of factorial invariance are a primary 

consideration in longitudinal SEM. 

• Absence of strong factorial invariance makes it difficult:
– to assert the same factors are measured with the same 

variables (i.e., “apples and oranges” problem)
– to go any further with growth and change models (i.e., 

“rubber rulers”).

• It seems reasonable for a researcher to examine various 
ways to achieve strong factorial invariance, even at the 
cost of factorial complexity (i.e., “life is not simple”)
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What if Strong FI does not hold?

• If Strong FI (or Strict FI) model does not fit, we might 
have evidence for a qualitative change, and this may be 
important in theory.

• Or, we might find that some specific variables may be 
the problem, and a model with only “partial invariance” 
in intercepts and/or loadings may be needed (this is a 
common solution nowadays).

• Alternatively we might consider some sampling theory 
of variables... and consider a more complex factor 
pattern (as in McArdle & Cattell, 1994).
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