
What’s for dynr: A Package for Linear and

Nonlinear Dynamic Modeling in R

Lu Ou+

Pennsylvania State University
Michael D. Hunter+

University of Oklahoma Health Sciences Center

Sy-Miin Chow
Pennsylvania State University

+These two authors contributed equally to the work. This paper is currently under review.

Abstract

Intensive longitudinal data have become increasingly prevalent in studies of circadian
rhythms, emotions, propagation of diseases, addictive behaviors, dyadic and family-level
interactions, as well as other human dynamic processes. Such data are noisy, often mul-
tivariate in nature, and may involve multiple subjects undergoing regime switches (e.g.,
showing discontinuities interspersed with continuous dynamics). Despite increasing inter-
est in using differential/difference equation models for representing these processes, there
has been a scarcity of software packages that are fast, freely accessible, and amenable
to the modeling goals of researchers of human dynamics. We have created an R pack-
age that is based on novel and computationally efficient algorithms for handling a broad
class of linear and nonlinear discrete- and continuous-time models with regime-switching
properties and linear Gaussian measurement functions in C, while maintaining simple and
easy-to-learn model specification functions in R. We present the mathematical and com-
putational basis used by the dynr R package, and present two illustrative examples to
demonstrate the unique features of dynr.

Keywords: dynamic modeling, regime switching, nonlinear, factor analysis, Markov model,
state-space model.

1. Introduction

The past several decades have seen a significant rise in the use of intensive longitudinal
designs, particularly in the social and behavioral sciences. These designs – implemented in
the form of daily diary studies, ecological momentary assessments, ambulatory assessments
and other related variations – aim to capture change processes “in the moment” as they
unfold within subjects (Bolger and Laurenceau 2013). The intensive longitudinal data (ILD)
that result from such designs have permeated our everyday lives in more than one way. For
instance, clinical trials now routinely incorporate electronic patient-reported outcomes where

2 dynr: Dynamic Modeling in R

individuals provide periodic reports from home as part of their daily routines (Byrom and
Tiplady 2010). These ILD provide valuable information about the effectiveness, side-effects,
and optimal timing of patient care (Stone, Shiffman, Atienza, and Nebeling 2008). Similarly,
mobile devices and wearable sensors are facilitating ambulatory collection of data that were
previously confined to laboratory settings (e.g., heart rate and skin conductance; Schnell,
Maini, Newman, and Newman 2008). However, the richness and sheer quantity of ILD that
are now being collected also lead to the emergence of novel data analytic challenges, and a
dire need for methods that can better manage and handle the dynamics of ILD.

Differential equation models and difference equation models (e.g., in the form of state-space
models) have been one of the most dominant tools for representing the dynamics of ILD in
disciplines such as the physical sciences, econometrics, engineering, and ecology. In parallel,
some computational advances have been proposed in estimating regime-switching models –
namely, models positing how otherwise continuous dynamic processes may undergo discontin-
uous changes through categorical but unobserved phases known as“regimes” (Kim and Nelson
1999; Hamilton 1989; Muthén and Asparouhov 2011; Chow, Grimm, Guillaume, Dolan, and
McArdle 2013; Chow, Witkiewitz, Grasman, and Maisto 2015; Dolan 2009). One of the
best known examples from psychology is perhaps Piaget’s (1969) theory of human cogni-
tive development and related extensions (Dolan, Jansen, and Van der Maas 2004; van der
Maas and Molenaar 1992; Hosenfeld 1997). Other examples include Kohlberg’s (Kohlberg
and Kramer 1969) conceptualization of stagewise development in moral reasoning, Van Dijk
and Van Geert’s (2007) findings on discrete shifts in early language development, as well as
Fukuda and Ishihara’s (1997) work on the discontinuous changes in infant sleep and wakeful-
ness rhythm during the first six months of life. In previous work in the literature, the timing
and nature of the switches between regimes have been specified as a first- and higher-order
Markovian process (e.g., Hamilton 1989; Dolan 2009; Yang and Chow 2010; Chow and Zhang
2013; Chow et al. 2015); or as governed by deterministic thresholds (e.g., as in threshold au-
toregressive models; Tong and Lim 1980), past values of a system (e.g., as in self-exciting
threshold autoregressive models; Tiao and Tsay 1994), and external covariates of interest
(Muthén and Asparouhov 2011; Chow et al. 2013, 2015).

Several programs and packages exist for fitting differential equation and difference equation
models. However, each program has certain limitations that dynr aims to overcome. Speaking
broadly, the largest differences between dynr and other packages are threefold: (1) dynr
readily allows for multi-subject models, (2) dynr allows for nonlinear dynamics, and (3) dynr
allows for regime switching throughout every part of the model. Many R packages exist for
univariate and multivariate time series. CRAN lists 217 packages in its task view for time
series (Hyndman 2016), a complete review of which is well-beyond the scope of this work.
However, generally these packages lack facilities for fitting time series from multiple subjects
(see Table 3.2 for an overview)1. Likewise there are very few software utilities designed for
nonlinear dynamics or regime switching. Petris and Petrone (2011) reviewed three packages
for linear state-space models: dlm (Petris 2010), KFAS (Helske 2016), and dse (Gilbert 2006
or later). These are among the state of the art for state-space modeling in R. Although KFAS
can accommodate in its measurement model all densities within the exponential family, the
corresponding dynamic model is required to be linear. In addition to these R packages, the
OpenMx 2.0 release (Neale, Hunter, Pritikin, Zahery, Brick, Kirkpatrick, Estabrook, Bates,

1The standard work around for packages that allow multivariate time series is to treat each subject as a
new set of variables in the time series. This becomes untenable with a large number of subjects.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 3

Maes, and Boker 2016) has maximum likelihood time-varying linear discrete- and continuous-
time state-space modeling. Likewise, the MKFM6 program (Dolan 2005) implements methods
of Harvey (1989) for time-invariant linear state-space models. SsfPack (Koopman, Shephard,
and Doornik 1999) implements the methods of Durbin and Koopman (2001) for linear state-
space modeling and Markov chain Monte Carlo methods for nonlinear modeling, but it is
primarily restricted to single-subject time series without regime switching. The ctsem package
(Driver, Oud, and Voelkle in press) has utilities for linear state-space modeling of multiple
subjects in continuous time, but lacks functionality for nonlinear models or regime switching.
MATLAB (The MathWorks, Inc. 2016) has numerous extensions for time series and state-space
modeling (e.g., Grewal and Andrews 2008), but lacks the ability to include regime switching
and multiple subjects. Helske (2016) included a review of numerous other packages for non-
Gaussian time series models which generally do not involve latent (unobserved) variables.

Overall, developments in fitting differential/difference models that evidence discontinuities in
dynamics are still nascent. Despite some of the above-mentioned advances in computational
algorithms, there is currently no readily available and accessible software package that allows
researchers to fit differential/difference equations with regime-switching properties. As stated
previously, currently available computational programs for dynamic modeling are limited in
one of several ways: (1) they are restricted to handling only linear differential or difference
equation models within regimes such as the package OpenMx; (2) they can only handle very
specific forms of nonlinear relations among latent variables; (3) they are computationally
slow; (4) they do not allow for stochastic qualitative shifts in the dynamics over time (i.e.,
regime switching); or (5) they require that the user write complex compiled code to enhance
computational speed at the cost of high user burden. Efficient and user-friendly computer
software needs to be developed to overcome these restrictions so the estimation of dynamic
models can become more applicable and accessible by researchers.

We present an R (R Core Team 2015) package, dynr, that allows users to fit both linear and
nonlinear differential and difference equation models with regime-switching properties. All
computations are performed quickly and efficiently in C, but are tied to a user interface in
the familiar R language. Specifically, for a very broad class of linear and nonlinear differen-
tial/difference equation models with linear Gaussian measurement functions, dynr provides
R helper functions that write and compile the C functions based on user input in R so that
the user never has to write or even see the C code that underlies dynr. This removes some of
the barriers to dynamic modeling, opening it as a possibility to a broader class of users, while
retaining the flexibility of specifying targeted model-specific functions in C for users wishing
to pursue models that are not yet supported in the R interface.

In the remaining sections, we will first present the mathematical and computational bases of
the dynr R package, and then demonstrate the interface of dynr for modeling multivariate
observations with Gaussian measurement errors using two ILD modeling examples from the
social and behavioral sciences. Key features of the dynr package we seek to highlight include:
(1) dynr fits discrete- and continuous-time dynamic models to multivariate longitudinal/time-
series data; (2) dynr deals with dynamic models with regime-switching properties; (3) for
improved speed, dynr computes and optimizes negative log-likelihood function values in C;
(4) dynr handles linear and nonlinear dynamic models with an easy-to-use interface that
includes a matrix form (for linear dynamic models only) and formula form (for linear as
well as nonlinear models); (5) dynr removes the burden on the user to perform analytic
differentiation in fitting nonlinear differential/difference equation models by providing the

4 dynr: Dynamic Modeling in R

user with R’s automatic differentiation; and (6) dynr provides ready-to-present results through
LATEX equations and plots.

2. General modeling framework

In this section, we discuss the broader modeling framework of dynr, of which the models
shown in the illustrative examples can be viewed as special cases. At the very basic level,
our general modeling framework comprises a dynamic model and a measurement model. The
former describes the ways in which the latent variables change over time whereas the latter
portrays the relationships between a set of observed variables and a set of latent variables at a
specific time. In cases involving multiple-regime models, the general model also comprises two
multinomial logistic regression models governing, respectively, the initial regime probabilities
and transition probabilities between regimes. Both the dynamic and measurement models
may show regime-dependent properties.

The dynamic model can take on the form of continuous-time or discrete-time functions. More
formally, for continuous-time models, we assume that the dynamic model within a particular
regime takes on the form of

dηi(t) = fSi(t) (ηi(t), t,xi(t)) dt+ dwi(t), (1)

where i indexes person, t indexes time, ηi(t) is the r × 1 vector of latent variables at time t,
xi(t) is the vector of covariates at time t, and fSi(t)(.) is the vector of (possibly nonlinear)
dynamic functions. Note that fSi(t)(.) depends on the latent regime indicator, Si(t), the
discrete-valued latent variable that indexes the operating regime at time t. Throughout, we
use the term regime and class interchangeably. The left-hand side of Equation 1, dηi(t),
gives the differential of the vector of continuous latent variables, ηi(t). Thus, changes in
the vector of latent variables are specified as (possibly nonlinear) functions of the same set
of latent variables, external covariates, and time. These functions, shown as fSi(t)(.), are
often known as the drift functions in the stochastic differential equation literature. Added to
these deterministic changes induced by the drift functions is wi(t), an r-dimensional Wiener
process (i.e., continuous-time analog of a random walk process). The differentials of the
Wiener processes have zero means and regime-specific covariance matrix, QSi(t), often called
the diffusion matrix.

For discrete-time processes, we adopt a dynamic model in state-space form as (Durbin and
Koopman 2001)

ηi(ti,j+1) = fSi(t) (ηi(ti,j), ti,j ,xi(ti,j)) +wi(ti,j+1), (2)

now postulated to unfold at discrete time points indexed by sequential positive integer values
of t. This is a one-step-ahead or difference equation form that is typically seen in discrete-
time state-space models. In this case, wi(t) denotes a vector of Gaussian distributed process
noise with regime-specific covariance matrix, QSi(t). Note that even though continuous- and
discrete-time models are typically expressed in the literature with distinct notations with
respect to time, here we have intentionally kept our notation largely similar between the two
sets of models to facilitate the linkage to software code, which allows for easy and seamless
transition between the discrete- and continuous-time frameworks with the use of a simple
binary flag. In a similar vein, we refer to fSi(t)(.) in both Equations 1 and 2 broadly as the

Lu Ou, Michael D. Hunter, Sy-Miin Chow 5

dynamic functions. We acknowledge that in the broader literature, fSi(t)(.) have been called
the continuous-time dynamic functions, the vector field of the differential equations, or the
drift functions in the continuous-time case; whereas in the discrete-time case, fSi(t)(.) have
been called the discrete-time dynamic functions, the flow of the differential equations, or the
state-transition functions.

In both the discrete- and continuous-time cases, the initial conditions for the dynamic func-
tions are defined explicitly to be the latent variables at an individual-specific initial time point,
ti,1 (i.e., the first observed time point), denoted as ηi(ti,1), and are specified to be normally
distributed with means µη1 and covariance matrix, Ση1 :

ηi(ti,1) ∼ N (µη1 ,Ση1) . (3)

Likewise for both discrete- and continuous-time models, we assume that the latent variables
are measured only at discrete times. That is, the latent variables may exist in discrete or
continuous time, but observations only occur at selected, discrete time points. Thus, we have
a discrete-time measurement model in which ηi(ti,j) at discrete time point ti,j is indicated
by a p × 1 vector of manifest observations, yi(ti,j). Generally for continuous-time processes,
the time intervals, ∆i,j = ti,j+1− ti,j may be uneven, whereas in discrete-time processes, they
must be uniform. However, missing data may be present under either of these specifications,
and this is one way of handling unequal measurement intervals in discrete time. The vector
of manifest observations is linked to the latent variables as

yi(ti,j) = τSi(ti,j) + ΛSi(ti,j)ηi(ti,j) + ASi(ti,j)xi(ti,j) + εi(ti,j),

εi(ti,j) ∼ N
(
0,RSi(ti,j)

)
, (4)

where τSi(ti,j) is a p × 1 vector of intercepts, ASi(ti,j) is a matrix of regression weights for
the covariates observed at time ti,j , ΛSi(ti,j) is a p × r factor loadings matrix that links the
observed variables to the latent variables, and εi(ti,j) is a p× 1 vector of measurement errors
assumed to be serially uncorrelated over time and normally distributed with zero means and
(possibly) regime-specific covariance matrix, RSi(ti,j). Of course, all parts of the measurement
model may be regime-dependent.

The subscript Si(t) that appears in Equations 1–4 indicates that the values of the parameters
in these functions and matrices may depend on Si(t), the operating regime for individual i
at time point, t. Often in practice, only some of these elements are freed to vary by regime.
To make inferences on Si(ti,j), it is essential to specify a model or mechanism through which
Si(ti,j) changes over individuals and time. Just as with the continuous latent variables in ηi(t),
we initialize the categorical latent variable Si(ti,j) on the first occasion and then provide a
model for how Si(ti,j) changes over time. The initial class (or regime) probabilities for Si(ti,1)
are represented using a multinomial regression model as

Pr
(
Si(ti,1) = m|xi(ti,1)

) ∆
= πm,i1 =

exp(am+bT
mxi(ti,1))∑M

k=1 exp(ak+bT
k xi(ti,1))

, (5)

where M denotes the total number of regimes, am denotes the logit intercept for the mth
regime and bm is a nb × 1 vector of regression slopes linked to a vector of covariates used to
explain possible interindividual differences in initial log-odds (LO) of being in a regime relative
to the reference regime selected by the user, operationalized as the regime where am and all

6 dynr: Dynamic Modeling in R

entries in bm are set to zero. Setting these entries to be zero in at least the reference regime is
necessary for identification purposes: this ensures that the initial regime probabilities across
all the hypothesized regimes sum to 1.0. In the simplest case without covariates, Equation 5
reduces to a specification of M initial regime prevalence parameters - either on a LO (ranging
from −∞ to +∞) or a probability (ranging between 0 and 1) scale, as preferred by the user.

With the initial class probabilities specified, it remains to create a model for how the classes
change over time. A simple strategy for this is to create a first-order Markov model for the
categorical latent variable, Si(ti,j), j = 2, . . . , T , for the remaining time span. Such a model
assumes that the probability of entering the current regime depends only on the previous
regime. All possible transitions from one regime to another can be arranged into a matrix of
transition probabilities, in which the rows index the previous regime at time ti,j−1 and the
columns index the regime to which the system transitions at time ti,j . Hence, we use a first-
order Markov process to define how the classes change over time in a transition probability
matrix. This transition matrix may also depend on covariates. Thus, a multinomial logistic
regression equation is assumed to govern the probabilities of transitions between regimes as:

Pr
(
Si(ti,j) = m|Si(ti,j−1) = l,xi(ti,j)

) ∆
= πlm,it =

exp(clm+dT
lmxi(ti,j)∑M

k=1 exp(clk+dT
lkxi(ti,j))

, (6)

where πlm,it denotes individual i’s probability of transitioning from class l at time ti,j−1 to
class m at time ti,j (i.e., the entry in the lth row and mth column of the transition probability
matrix), clm denotes the logit intercept for the transition probability, and dlm is a nd × 1
vector of logit slopes summarizing the effects of the covariates in xi(ti,j) on that transition
probability. The coefficients in dlm are LO parameters representing the effects of the covariates
on the LO of transitioning from the lth regime into the mth regime relative to transitioning
into the reference regime - namely, the regime in which all LO parameters (including clM
and all elements in dT

lM) are set to 0. One regime, again, has to be specified as the reference
regime for identification purposes to ensure that conditional on being in a particular regime
at time ti,j−1, the probabilities of transitioning to each of the M regimes sum to 1.0 (i.e.,∑M

m=1 πlm = 1).

To summarize, the model depicted in Equations 1 – 6 may take on the form of various
linear or nonlinear dynamic models in continuous- or discrete-time. Moreover, these dynamic
models may have regime-switching properties. Systematic between-person differences stem
primarily from changes in the person- and time-specific regime, Si(ti,j), and the corresponding
changes in the dynamic and measurement models over persons and over occasions. In other
words, by allowing the value of Si(ti,j) to vary over persons and time points, our general
modeling framework has the capacity to yield heterogeneous and distinct-looking model-
implied trajectories for different individuals. However, we assume that there are principled
or nomothetic (group-based) laws in how individuals change over time within each regime.
Thus, the hypothesized model is generally a group-based model that confines all modeling
parameters to be invariant across multiple subjects.2

2There is, however, the possibility of incorporating additional sources of between-person differences in the
form of random effects as additional latent variables in the model. We did not provide explicit illustrative
examples to demonstrate this modeling variation.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 7

3. Estimation procedures

In this section, we outline the procedures implemented in dynr for estimating the model
shown in Equations 1 – 6. Because our focus is on presenting the dynr interface functions
in R and the estimation algorithms and the corresponding Monte Carlo studies for testing
their performance have been reported elsewhere, we only provide a brief outline of the key
estimation procedures here and refer the reader to elsewhere for further technical details. We
will begin with the procedures for handling discrete-time models due to their longer history
and relative familiarity to readers across multiple disciplines, followed by the adaptations
implemented to handle continuous-time models at the dynamic level. An overview of the
estimation procedures involved, the different special cases handled by dynr, and the software
packages that can handle these special cases are summarized in Table 3.2.

3.1. Discrete-time models

The estimation procedures implemented in dynr are designed to handle the various special
cases subsumed under our broader modeling framework (see Table 3.2). Broadly speaking,
these methods are based on the Kalman filter (Kalman 1960), its various continuous-time
and nonlinear extensions, and the Kim filter (Anderson and Moore 1979; Bar-Shalom, Li,
and Kirubarajan 2001; Kim and Nelson 1999; Yang and Chow 2010; Chow and Zhang 2013;
Kulikov and Kulikova 2014; Kulikova and Kulikov 2014; Chow, Ou, Ciptadi, Prince, Rehg,
Rozga, and Messinger Under review). A full and detailed explanation of these algorithms is
beyond the scope of this paper; only a brief summary can be provided here. Readers may
find Chow, Ho, Hamaker, and Dolan (2010) and the applicable sections of Neale et al. (2016)
helpful in understanding the Kalman filter and its role in estimating the latent variables in ηi.
The Kim filter, designed to extend the Kalman filter to handle regime-switching state-space
models, was proposed by Kim and Nelson (1999) and extended by Chow and Zhang (2013)
to allow for nonlinear dynamic functions. Full details are given in the citations used in the
rest of this section. By combining the Kalman filter, the Kim filter, and their extensions to
continuous-time and nonlinear dynamics, a very large class of useful models can be estimated.
In dynr, models are allowed to (1) be in discrete or continuous time, (2) be single-regime or
regime-switching, (3) have linear or nonlinear dynamics, (4) involve stochastic or deterministic
dynamics, and (5) have one or more subjects. All combinations of these variations are possible
in dynr, creating 32 different kinds of models.

Let all parameters that appear in Equations 1 – 6 be collected into a vector of parameters,
θ. In cases involving linear dynamics in discrete time without regime-switching properties,
the model reduces to a standard linear state-space model, and we apply the Kalman filter
(KF; Kalman 1960) to estimate the latent variable values and obtain other by-products
for parameter optimization purposes. At each time point, the KF consists of two steps.
In the first step, the dynamics are used to make a prediction for the latent state at the
next time point conditional on the observed measurements up to time ti,j−1, creating a pre-
dicted mean η̂i(ti,j |ti,j−1) = E(ηi(ti,j)|Yi(ti,j−1)) and covariance matrix for the latent state
Pi(ti,j |ti,j−1) = Cov[ηi(ti,j)|Yi(ti,j−1)], where Yi(ti,j−1) includes manifest observations at
time ti,1, ti,2, ., up to time ti,j−1. In the second step, the prediction is updated based on the
measurement model (Equation 4) and the actual measurements from the next time point,
yielding η̂i(ti,j |ti,j) = E(ηi(ti,j)|Yi(ti,j)) and associated covariance matrix, Pi(ti,j |ti,j) =
Cov[ηit|Yi(ti,j)]. These predictions and errors are by-products of the KF and can be used

8 dynr: Dynamic Modeling in R

to construct a log-likelihood function known as the prediction error decomposition function
(De Jong 1988; Harvey 1989; Hamilton 1994; Chow et al. 2010). This log-likelihood func-
tion is constructed based on the premise that the prediction errors, defined as Yi(ti,j) −
E(Yi(ti,j)|Yi(ti,j)), which captures the discrepancies between the manifest observations and
the predictions implied by the model, are multivariate normally distributed. This log-likelihood
function is optimized to yield maximum-likelihood estimates of all the time-invariant param-
eters in the free parameter vector θ, as well as to construct information criterion (IC) mea-
sures (Chow and Zhang 2013; Harvey 1989) such as the Akaike Information Criterion (AIC;
Akaike 1973) and Bayesian Information Criterion (BIC; Schwarz 1978). Standard errors of
the parameter estimates are obtained by taking the square root of the diagonal elements of
the inverse of the negative numerical Hessian matrix of the prediction error decomposition
function at the point of convergence.

At convergence, other products from the linear KF include updated latent states, η̂i(ti,j |ti,j),
and the updated latent covariance matrices, Pi(ti,j |ti,j). In the social and behavioral sciences,
the entire time series of observations has often been collected prior to model fitting. In such
cases, we use the fixed interval smoother (Anderson and Moore 1979; Ansley and Kohn
1985) to refine the latent variable estimates, yielding the smoothed latent variable estimates,
η̂i(ti,j |Ti) = E(ηi(ti,j)|Yi(Ti)), and associated covariance matrices, Pi(ti,j |Ti).

When the dynamic model takes on the form of a nonlinear state-space model with differen-
tiable dynamic functions, the linear KF is replaced with the extended Kalman filter (EKF; An-
derson and Moore 1979; Bar-Shalom et al. 2001) so that the nonlinear dynamic functions are
“linearized” or approximated by Taylor series expansion retaining only the first-order terms.
Assuming that the measurement and process noise components are normally distributed and
that the measurement equation is linear as assumed in Equation 4, the prediction errors are
still multivariate normally distributed. These prediction errors can then be used to construct
a log-likelihood function similar in form to the prediction error decomposition function as
in the linear state-space modeling case, but the corresponding parameter estimates are only
“approximate” ML estimates due to the truncation errors from the first-order Taylor series
expansion in the EKF. The feasibility of this approach has been demonstrated by Chow,
Ferrer, and Nesselroade (2007).

When a linear state-space model is used as the dynamic model but it is characterized by
regime-switching properties, dynr uses an extension of the standard linear KF procedure,
known as the Kim filter, and the related Kim smoother (Kim and Nelson 1999; Yang and
Chow 2010), for estimation purposes. The Kim filter combines the linear KF, the Hamilton
filter (Hamilton 1989) and a collapsing procedure to avoid the need to store M2 new values

of η̂i(ti,j |ti,j)l,m
∆
= E[ηi(ti,j)|Si(ti,j−1) = l, Si(ti,j) = m,Yi(ti,j)], as well as Pi(ti,j |ti,j)l,m

∆
= Cov[ηi(ti,j)|Si(ti,j−1) = l, Si(ti,j) = m,Yi(ti,j)] with each additional time point. The
collapsing procedure averages the estimates over the previous regime l (l = 1, . . ., M) so only
the marginal estimates, η̂i(ti,j |ti,j)m (i.e., E[ηi(ti,j)|Si(ti,j) = m,Yi(ti,j)]), and the associated
covariance matrix, Pi(ti,j |ti,j)m, m = 1, . . ., M) need to be stored at each time step. To
handle cases in which nonlinearities are present in Equation 2, a method proposed by Chow
and Zhang (2013), called the extended Kim filter, is used for estimation instead. The extended
Kim filter replaces the linear KF portion of the Kim filter with the nonlinear EKF.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 9

3.2. Continuous-time models

Finally, when the dynamic model takes on the form of a continuous-time model – whether as
composed of linear or nonlinear dynamic functions – the resultant estimation procedures are
the continuous-discrete extended Kalman filter (CDEKF; Bar-Shalom et al. 2001; Kulikov
and Kulikova 2014; Kulikova and Kulikov 2014). The CDEKF assumes that the underlying
dynamic functions take on the form of a set of stochastic differential equation (SDE) functions
as in Equation 1 and the measurements are available at discrete time intervals, as in Equation
4, but without the dependency on Si(t), the latent regime indicator. In other words, the model
handled by the CDEKF may be viewed as a single-regime special case of the general model
shown in Equations 1–4.

For continuous processes in the form of Equation 1, let η̂i(t) = E(ηi(t)|Yi(ti,j−1)) and
Pi(t) = Cov[ηi(t)|Yi(ti,j−1)] denote the mean and covariance matrix of the latent vari-
ables, respectively, at time t in the interval [ti,j−1, ti,j]. In the CDEKF framework, the
prediction step of KF is replaced by solving a set of ordinary differential equations (ODE)
at time ti,j , given the initial conditions at time ti,j−1: η̂i(ti,j−1) = η̂i(ti,j−1|ti,j−1) and
Pi(ti,j−1) = Pi(ti,j−1|ti,j−1). This set of ODEs is obtained by only retaining the first term,
fSi(t) (η̂i(t), t,xi(t)), in the Taylor series expansion of fSi(t) (ηi(t), t,xi(t)) around the expec-
tation η̂i(t), and is shown below:

dη̂i(t)

dt
= fSi(t) (η̂i(t), t,xi(t)) , (7)

dPi(t)

dt
=

∂fSi(t) (η̂i(t), t,xi(t))

∂η̂i(t)
P(t) + P(t)

(
∂fSi(t) (η̂i(t), t,xi(t))

∂η̂i(t)

)>
+ QSi(t). (8)

where
∂fSi(t)

(η̂i(t),t,xi(t))

∂η̂i(t)
is the Jacobian matrix of fSi(t) (η̂i(t), t,xi(t)) with respect to η̂i(t)

at time t. Kulikov and Kulikova (2014, Kulikova and Kulikov 2014) suggested solving for
equations 7 and 8 using adaptive ODE solvers. We adopt one approximate numerical solution
— the fourth-order Runge-Kutta (Press, Teukolsky, Vetterling, and Flannery 2002) method
— to solve Equations 7 and 8. In cases where the hypothesized continuous-time dynamic
functions are linear, explicit analytic solutions exist and there is no need to use numerical
solvers. However, in our simulation work, estimating known special cases of linear stochastic
differential equation models using numerical solvers yielded comparable estimates and compu-
tational time to estimating the same models using their known solutions. Thus, for generality,
we utilize numerical solvers in solving both linear and nonlinear differential equations in dynr.

As in the case involving nonlinear discrete-time dynamic models, parameter estimates ob-
tained from optimizing the log-likelihood function constructed from by-products of CDEKF
are also approximate ML estimates; however, the approximations now stem both from the
truncation errors from the first-order Taylor series expansion in the CDEKF, as well as the
numerical solver that is used to solve Equations 7 and 8.

In cases involving regime-switching ordinary or stochastic differential equations, the algo-
rithms for estimating regime-switching continuous-time models are essentially estimation pro-
cedures that combine the CDEKF and part of the Kim filter designed to handle estimation
of the regime-switching portion of the model. The resultant procedure, referred to herein as
continuous-discrete extended Kim filter, is summarized in Chow et al. (Under review).

10 dynr: Dynamic Modeling in R

Discrete-time Continuous-time

S
in

gl
e-

re
g
im

e

Linear Linear state-space model Linear SDE/ODE
KF CDEKF

dynr, OpenMx, pomp, KFAS, dlm, dse, dynr, pomp, OpenMx, ctsem,
MKFM6, SsfPack, MATLAB MATLAB

Nonlinear Nonlinear state-space model Nonlinear SDE/ODE
EKF CDEKF

dynr, pomp, SsfPack, MATLAB dynr, pomp, MATLAB

M
u

lt
ip

le
-r

eg
im

e Linear RS state-space model RS SDE/ODE
Kim filter CD Kim filter

dynr, dynr only
GAUSS code, MATLAB

Nonlinear RS nonlinear state-space model RS nonlinear SDE/ODE
Extended Kim filter CD extended Kim filter

dynr only dynr only

Table 1: Models, algorithms, and software for the framework of regime-switching (non)linear
state space models in discrete- and continuous-time. SDE = Stochastic Differential Equation,
ODE = Ordinary Differential Equation, CD = Continuous-Discrete, RS = Regime-Switching,
KF = Kalman filter (Kalman 1960), EKF = Extended Kalman filter (Anderson and Moore
1979; Bar-Shalom et al. 2001), Kim filter = KF + Hamilton filter + Collapsing procedure
(Kim and Nelson 1999). Extended Kim filter was proposed by Chow and Zhang (2013); the
CD extended Kim filter is proposed by Chow et al. (Under review).

4. Steps for preparing and “cooking” a model

The general procedure for using the dynr package can be summarized in five steps as below.
The theme around the naming convention exploits the pronunciation of the package name:
dynr is pronounced the same as “dinner.” Therefore, the names of functions and methods are
specifically designed to relate to things done surrounding dinner, such as gathering ingredients
(e.g., the data), preparing recipes, cooking, which involves combining ingredients according
to a “modeling” recipe and applies heat, and serving the finished product.

Implementation of a full “dinner” occurs as follows. First, data are gathered and identified
with the dynr.data() function. Second, recipes are prepared. To each part of a model there
is a corresponding prep.*() recipe function. Each of these functions creates an object of
class dynrRecipe. Each prep.*() function creates an object of class dynrThing which is in
turn a subclass of dynrRecipe. These recipe functions include:

1. The prep.measurement() function defines the measurement part of the model, that is,
how latent variables and exogenous covariates map onto the observed variables.

2. The prep.matrixDynamics() and prep.formulaDynamics() functions define the dy-
namics of the model with either a strictly linear, matrix interface or with a possibly
nonlinear formula interface, respectively.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 11

3. The prep.initial() function defines the initial conditions of the model. The initial
conditions are used by the iterative and recursive algorithms as the starting point for
latent variable estimates. As such, the prep.initial() function describes the initial
mean vector and covariance matrix of the latent variables, assumed to be multivariate
normally distributed at the initial and all remaining time points.

4. The prep.noise() function defines the covariance structure for both the measurement
(or observation) noise and the dynamic (or latent) noise.

5. The prep.regimes() function provides the regime switching structure of the model.
Single-regime models do not require a dynrRegimes object.

Once the data and recipes are prepared, the third step mixes the data and recipes together
into a model object of class dynrModel with the dynr.model() function. Fourth, the model
is cooked with dynr.cook(). In dynr, cooking refers to estimating the free parameters and
standard errors of a model. Fifth and finally, results are served in summary tables (with a
summary() method), plots of trajectories and equations (with plot(), dynr.ggplot() (or its
alias autoplot()), and plotFormula()), as well as LATEXequations (with printex()).

We will demonstrate the interface of dynr using two examples of dynamic models that can
be implemented using the package: (1) a linear state-space example with regime-switching
properties based on Yang and Chow (2010); and (2) a regime-switching extension of the
predator-prey model (Lotka 1925; Volterra 1926).

5. Example 1: Regime-switching linear state-space model

Facial electromyography (EMG) has been used in the behavioral sciences as one possible
indicator of human emotions (e.g., Schwartz 1975; Cacioppo and Petty 1981; Cacioppo, Petty,
Losch, and Kim 1986; Dimberg, Thunberg, and Elmehed 2000). When human subjects are
exposed to emotion induction procedures, researchers have detected changes in individuals’
facial EMG recordings even when the corresponding changes in facial expression are too subtle
to be detected by human raters (Schwartz 1975; Dimberg 1990; Cacioppo and Petty 1981).

A time series of EMG data contains bursts of electrical activity that are typically magnified
when an individual is under emotion induction. However, because data segments with bursts
are very short and are interspersed with long periods of deactivation (i.e., segments without
bursts), the distribution of EMG data deviates substantially from normality (see sample facial
EMG data from one participant plotted in Figure 1(A)). To represent the patterns of EMG
data, Yang and Chow (2010) proposed using a regime-switching linear state-space model in
which the individual may transition between regimes with and without facial EMG activation.
In this way, the data could be reasonably assumed to be normally distributed conditional
on the regime in which an individual resides at a particular moment; heterogeneities in the
dynamic patterns and variance of EMG data are also accounted for through the incorporation
of these latent regimes. Model fitting was previously performed at the individual level. Data
from the participant shown in Figure 1(A) are made available as part of the demonstrative
examples in dynr. A complete modeling script for this example is available as one of the demo
examples in dynr and can be run using demo(RSLinearDiscreteYang). Here we present
selected segments of code to showcase how a linear state-space model with regime-switching

12 dynr: Dynamic Modeling in R

can be specified in dynr. The model of interest is the final model selected for this participant
by Yang and Chow (2010):

yi(ti,j) = µySi(ti,j) + βSi(ti,j)Self-report(ti,j) + ηi(ti,j), (9)

ηi(ti,j+1) = φSi(ti,j)ηi(ti,j) + ζi(ti,j+1), (10)

in which we allowed the intercept, µySi(ti,j), the regression slope, βSi(ti,j), and the autoregres-
sion coefficient, φSi(ti,j), to be regime-dependent. By allowing φSi(ti,j) to be regime-specific,
we indirectly allowed the total variance of the latent component, ηi(ti,j+1), to be heteroge-
neous across the deactivation and activation stages, in spite of requiring the dynamic noise
variance, E(ζi(t)

2), to be constant across regimes.

The first step in dynr modeling is to structure the data. This is done with the dynr.data()

function.

R> require("dynr")

R> data("EMG")

R> EMGdata <- dynr.data(EMG, id = 'id', time = 'time',
+ observed = 'iEMG', covariates = 'SelfReport')

The first argument of this function is either a ts class object of single-subject time series
or a data.frame structured in a long (relational) format (i.e., with different measurement
occasions from the same subject appearing as different rows in the data frame). Missing val-
ues in the observed variables should be indicated by NA. When a ts class object is passed to
dynr.data(), no other inputs are needed. Otherwise, the id argument needs the name of the
ID variable as input, and allows multiple people to be estimated in a single model by distin-
guishing different individuals with the ID variable. That is, it indicates which rows should be
modeled together as a time series. Thus, multi-subject modeling is as easy as single-subject
modeling; only the data differ. The time argument needs the name of the TIME variable
that indicates subject-specific measurement occasions. If a discrete-time model is desired, the
TIME variable should contain subject-specific sequences of (subsets of) consecutively equally
spaced numbers (e.g, 1, 2, 3, · · ·). In other words, the program assumes that the input
data.frame is equally spaced with potential missingness. If the measurment occasions for a
subject are a subset of an arithmetic sequence but are not consecutive, NAs will be inserted
automatically to create an equally spaced data set before estimation. If a continuous-time
model is being specified, the TIME variable can contain subject-specific increasing sequences
of irregularly spaced real numbers. That is, the data may be input at their original, irregu-
larly spaced intervals without the need to insert missingness. In this particular example, a
discrete time model is used.

The observed and covariates arguments are used to indicate the names of the observed
variables and covariates in the data. Covariates are defined as fixed predictors that are
hypothesized to affect the modeling functions in one or more ways, but are otherwise not of
interest (i.e., not modeled as dependent variables) to the user. Missing values in covariates
are not allowed. That is, missing values in the covariates, if there are any, should be imputed
first. The dynr.data() function lets users include data sets with many variables, but only
use a few. The output of the function combines with the model recipe information later to
map the model onto the data.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 13

0 20 40 60 80 100 120

(A)

Measured iEMG
Measured Self−Report

0

2

4

6

8

10

12

0

5

10

S
el

f−
R

ep
or

t

In
te

gr
at

ed
 E

M
G

 (
 µ

V
)

Time (seconds)

●●

●

●

●●

●

●

●

●

●●

●
●

●
●●
●

●

●

●
●

●●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●
●

●●●●●
●

●
●
●●●●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●
●●

●

●
●●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●
●●
●●
●
●

●

●

●
●

●

●

●

●
●
●

●

●
●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●●●

●
●
●

●
●

●

●
●●

●

●●

●

●
●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●●

●

●

●●

●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●

●
●

●
●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●●●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●●
●

●
●

●●

●
●

●

●

●
●
●
●
●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●
●●

●●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

1

−1

0

1

2

3

0 50 100
time

S
m

oo
th

ed
 S

ta
te

 V
al

ue
s

variable ● eta

regime Activated Deactivated

(B) Results from RS−AR model

Figure 1: (A) A plot of integrated electromyography (iEMG) and self–report affect ratings
for one participant with a time interval of 0.2 seconds between two adjacent observations.
Self–report = self–report affect ratings; iEMG = integrated EMG signals. (B) An automatic
plot of the smoothed state estimates for the regime-switching linear state-space model.

14 dynr: Dynamic Modeling in R

The next step in dynr modeling is to build the recipes for the various parts of a model. The
recipes are created with prep.*() functions. For instance, the noise recipe is created with
prep.noise(). The code below creates the noise recipe by calling the prep.noise() function.
The noise recipe is stored in the recNoise object, an abbreviation for “recipe noise”. The
latent noise covariance matrix is a 1× 1 matrix with a free parameter called dynNoise, short
for “dynamic noise.” The observed noise covariance matrix is also a 1 × 1 matrix, but has
the measurement noise variance fixed to zero. These covariance matrices need to be positive
definite. The zero’s in the diagonal of a covariance matrix are internally replaced by a small
positive number automatically before estimation. To ensure the matrix stays positive definite
in estimation, we will apply a set of transformations to the matrix in each iteration of the
optimization, so the starting or fixed values of these matrices are automatically adjusted for
this purpose.

R> recNoise <- prep.noise(

+ values.latent = matrix(1, 1, 1),

+ params.latent = matrix('dynNoise', 1, 1),

+ values.observed = matrix(0, 1, 1),

+ params.observed = matrix('fixed', 1, 1))

A general feature of the prep.*() functions is to handle multiple regimes by using lists as the
objects given to the recipe functions. The primary inputs of many of the recipe functions are
the values.* and params.* arguments. The values.* arguments give the starting values and
fixed values of parts of the recipe. The params.* arguments give the free parameter names
corresponding to the values or indicate a fixed value by using the reserved name “fixed”. The
values.* and params.* arguments can be a single matrix, or a list of matrices for multiple-
regime models with each element of a list corresponding to a regime.3 If only one matrix is
specified for a regime-switching dynamic model, the process noise covariance structure stays
the same across regimes.

The next block of code creates the measurement recipe (i.e., the functions shown in Equation
4) by calling the prep.measurement() function. The measurement recipe is stored in the
recMeas object, short for “recipe measurement”. There are two important differences of in-
terest between the code used for this function and that used for the noise recipe. First, instead
of referring to values.latent and values.observed for the latent and observed noise, this
function refers to values.load, values.int, and values.exo for the factor loadings, mea-
surement intercepts, and exogenous covariate effects, respectively. Second, the measurement
part of the model is regime-switching so the objects given to the values.* and params.*

arguments are lists of matrices instead of matrices. The first element of each list corresponds
to the first regime. The second element of each list is for the second regime.

R> recMeas <- prep.measurement(

+ values.load = rep(list(matrix(1, 1, 1)), 2),

+ values.int = list(matrix(4, 1, 1), matrix(3, 1, 1)),

+ params.int = list(matrix('mu_1', 1, 1), matrix('mu_2', 1, 1)),

+ values.exo = list(matrix(0, 1, 1), matrix(1, 1, 1)),

+ params.exo = list(matrix('fixed', 1, 1), matrix('beta_2', 1, 1)),

3Lists of length one are also acceptable, but they are more work to write. Internally, when single matrices
are given to recipe functions they are turned into lists of length one.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 15

+ obs.names = c('iEMG'),
+ state.names = c('eta'),
+ exo.names = c("SelfReport"))

The above code block creates the regime-switching measurement model where the factor
loadings matrices for both regimes are 1× 1 matrices fixed at one. Thus, the factor loadings
are non-regime-switching. The two intercepts, corresponding to the µySt in Equation 9, are
given starting values of four and three with the free parameter names mu_1 and mu_2. The
two covariate effects are given a similar pattern of starting values and correspond to the βSt of
Equation 9, but the covariate effect in the Deactivated Regime is fixed to zero. This constraint
implies that the self-reported emotions of the participant have no influence on their EMG
data unless the participant is emotionally activated (i.e., in the Activated Regime). Lastly,
the *.names arguments, including obs.names, state.names, and exo.names, give the names
of the observed variables, latent states, and exogenous covariates, respectively.

The prep.regimes() function specifies the structure of the regime switching functions shown
in Equation 6. Note that based on Equation 6, a total of nd + 1 parameters, including an
intercept, clm, and nd regression slopes in dlm, have to be defined for each of the functions
governing the transition from the lth regime (l = 1, . . . ,M) to themth regime (m = 1, . . . ,M).
In total, there are M ×M of such transition functions, corresponding to entries in an M ×M
transition probability matrix. The function prep.regimes() requires the user to provide the
starting values (through the values argument) and names (through the params argument)
for these M × (nd + 1) parameters as a matrix whose number of rows equals to the number
of regimes (i.e., M) and number of columns equals to the product of the number of regimes
and the total number of parameters (i.e., (nd + 1)M) as:

c11 d>11 c12 d>12 · · · c1M d>1M
c21 d>21 c22 d>22 · · · c2M d>2M
...

...
...

...
...

...
...

cM1 d>M1 cM2 d>M2 · · · cMM d>MM

 . (11)

In this example, we do not have any covariates in the regime-switching (RS) functions. Thus,
all the cells corresponding to the entries in dlm drop out. The problem then reduces to
the specification of a 2 × 2 transition log-odds (LO) matrix. Here, we are interested in
specifying a RS model in which conditional on any of the two previous regimes, there is a
higher probability of staying in the current regime than transitioning to a different regime.
To accomplish this, we first note that we set the LO entries in second column of the 2 ×
2 transition LO matrix (corresponding to the Activated Regime) to zero for identification
purposes. Thus, the Activated Regime serves in this case as the reference regime. The
first column of the transition LO matrix, which consists of freely estimated LO parameters
named c11 and c21, is populated with the starting values of: (1) c11 = 0.7, corresponding to
exp(0.7) = 2.01 times greater LO of staying within the Deactivated Regime as transitioning
from the Deactivated to the Activated Regime, the reference regime; and (2) c21 = −1,
corresponding to exp(−1) = 0.37 times lower LO of transitioning from the Activated Regime
to the Deactivated Regime relative to the LO of staying Activated.

R> recReg <- prep.regimes(

+ values = matrix(c(.7, -1, 0, 0), 2, 2),

+ params = matrix(c('c11', 'c21', 'fixed', 'fixed'), 2, 2))

16 dynr: Dynamic Modeling in R

In essence, the above code creates the following transition probability matrix:


Deactivatedti,j+1 Activatedti,j+1

Deactivatedti,j
exp(c11)

exp(c11)+exp(0)
exp(0)

exp(c11)+exp(0)

Activatedti,j
exp(c21)

exp(c21)+exp(0)
exp(0)

exp(c21)+exp(0)

 (12)

with starting values of

(Deactivatedti,j+1 Activatedti,j+1

Deactivatedti,j .668 .332
Activatedti,j .269 .731

)
. (13)

In cases where covariates are involved in the multinomial logistic regression, a covariates

argument allows us to provide the names of the covariates according to the order of the
elements in dlm. The second example shows equations and code that illustrate how covariates
can be incorporated into the multinomial logistic regression (e.g., Equations 23 and 24 and
neighboring blocks of code).

In many situations it is useful to specify the structure of the transition LO matrix in deviation
form - that is, to express the LO intercepts in all but the reference regime as deviations from
the LO intercept in the reference regime. This creates a comparison class with all other
transition intercepts evaluated as compared to that class. Note that the deviation reference
regime differs from that described previously. The former description had only a reference
column, whereas the deviation reference regime adds to this a reference row. In the deviation
case it is expedient to reformulate the intercept as the sum of a baseline and a deviation:

clm = cm + c∆,lm (14)

where cm denotes the logit intercept for the probability of switching into latent class m from
the reference row class, c∆,lm denotes the deviation in LO of switching into latent class m at
time ti,j from latent class l (i.e., from Si(ti,j−1) = l to Si(ti,j) = m), as compared to switching
from the reference row class. In this case, the multinomial logistic regression equation in
Equation 6 now appears as:

Pr
(
Si(ti,j) = m|Si(ti,j−1) = l,xi(ti,j)

) ∆
= πlm,it =

exp(cm+c∆,lm+dT
lmxi(ti,j)∑M

k=1 exp(ck+c∆,lk+dT
lkxi(ti,j))

, (15)

and all parameters in Equation 15 can be summarized into
c∆,11 dT

11 c∆,12 dT
12 · · · c∆,1M dT

1M

c∆,21 dT
21 c∆,22 dT

22 · · · c∆,2M dT
2M

...
...

...
...

...
...

...

c1 dT
M1 c2 dT

M2 · · · cM dT
MM

 , (16)

if we use regime M for the reference row and hence have c∆,Ml = 0 for l = 1, . . ., M . This
allows the same parameter matrix structure for both the deviation form (Equation 16) and
non-deviation form (Equation 11) of the regime switching probabilities by dropping the c∆,Ml

terms in the reference row and replacing them with the cm logit intercepts. For convenience,
both the deviation and the non-deviation form (Equations 15 and 6) are available in dynr.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 17

That is, users are allowed to estimate either parameter matrix 11 or 16. For identification
purposes, we can again choose regime M as the reference column and impose the constraints
that cM = c∆,lM = 0 and dlM = 0 for l = 1, . . ., M to ensure that

∑M
m=1 πlm = 1. Likewise,

above we have shown an example that uses regime M for the reference row and column, but
these are independent choices that can be made by the user. The following code specifies a
deviation form for this example.

R> recReg2 <- prep.regimes(

+ values = matrix(c(.8, -1, 0, 0), 2, 2),

+ params = matrix(c('c_Delta11', 'c1', 'fixed', 'fixed'), 2, 2),

+ deviation = TRUE, refRow = 2)

By default the reference row is set to the automatically detected reference column, but the
code makes this choice explicit. Importantly, this code creates the same starting values as
seen in Equation 13 but parameterized in the form of Equation 16. The deviation form can
be extremely useful for testing hypotheses about the relationships between LO intercepts and
for making constraints across regimes.

The dynamic functions, fSi(t)() in Equations 1 and 2, can be specified using one of two
possible functions in dynr: prep.formulaDynamics() and prep.matrixDynamics(). The
dynamic model in this particular example consists only of linear functions, although the
parameters that appear in these linear functions are regime-dependent. In this special case,
the dynamic model in Equation 2 reduces to:

ηi(ti,j+1) = αSi(ti,j) + F Si(ti,j)ηi(ti,j) +BSi(ti,j)xi(ti,j) +wi(ti,j+1), (17)

where the general, possibly nonlinear function fSi(t)() is replaced with a linear function con-
sisting of (1) an intercept term αSi(ti,j), (2) linear dynamics instantiated as an r × r matrix
F Si(ti,j), (3) linear covariate regression effects BSi(ti,j), and the same additive noise term
wi(ti,j+1). As indicated by the subscript Si(ti,j), all of these can also be regime-dependent.
Of course, the same structure is possible in continuous time as the linear analog of Equation
1.

dηi(t) =
(
αSi(t) + F Si(t)ηi(t) +BSi(t)xi(t)

)
dt+ dwi(t), (18)

In this example, the dynamics as in Equation 10 are linear and discrete-time, so we can
describe the dynamics in terms of Equation 17 as

ηi(ti,j+1) = 0︸︷︷︸
αSi(ti,j)

+φSi(ti,j)︸ ︷︷ ︸
FSi(ti,j)

ηi(ti,j) + 0︸︷︷︸
BSi(ti,j)

xi(ti,j) + ζi(ti,j+1)︸ ︷︷ ︸
wi(ti,j+1)

. (19)

The prep.matrixDynamics() function allows the user to specify the structures of the inter-
cept vector αSi(ti,j), through values.int and params.int, the covariate regression matrix
BSi(ti,j), through values.exo and params.exo, and the one-step-ahead transition matrix
F Si(ti,j), through values.dyn and params.dyn, in the linear special case for those who prefer
to work in such a matrix algebraic framework. We illustrate this function in the current
example below. The values.dyn argument gives a list of matrices for the starting values
of F Si(ti,j). The params.dyn argument names the free parameters. These are the φSt in
Equation 10. The isContinuousTime argument switches between continuous-time modeling

18 dynr: Dynamic Modeling in R

(when true) and discrete-time modeling (when false). Because this argument is false, the dy-
namics are in a discrete-time form that matches Equation 10. The arguments corresponding
to the intercepts (values.int and params.int) and the covariate effects (values.exo and
params.exo) are omitted to leave these matrices as zeros. Later examples will show how to
specify continuous-time nonlinear dynamics.

R> recDyn <- prep.matrixDynamics(

+ values.dyn = list(matrix(.1, 1, 1), matrix(.5, 1, 1)),

+ params.dyn = list(matrix('phi_1', 1, 1), matrix('phi_2', 1, 1)),

+ isContinuousTime = FALSE)

After the recipes for all parts of the model are defined, the dynr.model() function creates the
model and stores it in the dynrModel object. Each recipe (i.e., objects of class dynrRecipe

created by prep.*()) and the data prepared by dynr.data() are given to this function. The
function requires dynamics, measurement, noise, initial, and data as mandatory inputs
for all models. When there are multiple regimes in the model, the regimes argument should
be provided as shown below. When parameters are subject to transformation functions,
a transform argument can be added, which will be discussed in the second example. The
dynr.model() function takes the recipes and the data and combines information from both. In
doing so, this function uses the information from each recipe to write the text for a C function.
Optionally, the C functions can be written to a file named by the outfile argument (i.e.,
“RSLinearDsicrete.c” in this specific example) so that the user can inspect the automatically
generated C code. Ideally of course, there is no need to ever examine this file; however, it is
sometimes useful for debugging purposes and may be helpful for specifying models that extend
those supported by the R interface functions. More frequently, inspecting the dynrModel

object and “serving it” will provide the needed information.

R> rsmod <- dynr.model(

+ dynamics = recDyn,

+ measurement = recMeas,

+ noise = recNoise,

+ initial = recIni,

+ regimes = recReg,

+ data = EMGdata,

+ outfile = "RSLinearDiscrete.c")

R> yum <- dynr.cook(rsmod)

In the last line above, the model is “cooked” with the dynr.cook() function to estimate the
free parameters and their standard errors. When cooking, the C code that was written by
dynr.model() is compiled and dynamically linked to the rest of the compiled dynr code.
Then the C is executed to optimize the free parameters while calling the dynamically linked
C functions that were created from the user-specified recipes. There are two points worth
emphasizing in this regard. First, the user never has to write C functions. Second, the user
benefits from the C functions because of their speed. In this way, dynr provides an R interface
for dynamical systems modeling while maintaining much of the speed associated with C.

The final step associated with dynr modeling is serving results (a dynrCook object) after the
model has been cooked. To this end, several standard, popular S3 methods are defined for

Lu Ou, Michael D. Hunter, Sy-Miin Chow 19

the dynrCook class, including coef(), confint(), deviance(), logLik() (and thus implicitly
AIC() and BIC()), names(), nobs(), summary(), and vcov(). These methods perform the
same tasks as their counterparts for regression models (i.e., lm class objects). Besides, dynr
also provides a few other model-serving functions. Here we illustrate in turn: summary(),
plot(), dynr.ggplot() (or autoplot()), plotFormula(), and printex(). The summary()

method provides a table of free parameter names, estimates, standard errors, t-values, and
Wald-type confidence intervals.

R> summary(yum)

Coefficients:

Estimate Std. Error t value ci.lower ci.upper Pr(>|t|)

phi_1 0.26608 0.04953 5.372 0.16900 0.36315 5.33e-08 ***

phi_2 0.47395 0.04425 10.711 0.38722 0.56068 < 2e-16 ***

beta_2 0.46449 0.04394 10.571 0.37837 0.55061 < 2e-16 ***

mu_1 4.55354 0.02782 163.658 4.49901 4.60807 < 2e-16 ***

mu_2 4.74770 0.14250 33.318 4.46842 5.02699 < 2e-16 ***

dynNoise 0.20896 0.01129 18.504 0.18683 0.23110 < 2e-16 ***

c11 5.50199 0.70939 7.756 4.11160 6.89237 < 2e-16 ***

c21 -5.16170 1.00424 -5.140 -7.12998 -3.19342 1.79e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-2 log-likelihood value at convergence = 1002.52

AIC = 1018.52

BIC = 1054.87

These parameter estimates, standard errors, and likelihood values closely mirror those re-
ported in Yang and Chow (2010, p. 755-756). In the Deactivated Regime, the autoregressive
parameter (phi_1) and the intercept (mu_1) are lower than in the Activated Regime. So,
neighboring EMG measurements are more closely related in the Activated Regime and the
overall level is slightly higher. This matches very well with the idea that the Activated Regime
consists of bursts of facial muscular activities and an elevated emotional state. Similarly, the
effect of the self-reported emotional level is positive in the Activated Regime and fixed to
zero in the Deactivated Regime. In the nested model that freely estimated this covariate
effect in the Deactivated Regime, it was estimated at -0.00258 with a t-value of -0.097 and
thus was subsequently fixed at zero. So, in the Deactivated Regime there is no relationship
between the self-reported emotional level and the facial muscular activity. Essentially, in the
Activated Regime the facial EMG and the self-reported emotions become coupled, but in the
Deactivated Regime they are unrelated. The dynamic noise parameter gives a sense of the
size of the intrinsic unmeasured disturbances that act on the system. These forces perturb
the system with a typical magnitude (i.e., standard deviation) of a little less than half a point
on the EMG scale seen in Figure 1(A). Lastly, the log-odds parameters (c11 and c21) can be
turned into the transition probability matrix yielding

(Deactivatedti,j+1 Activatedti,j+1

Deactivatedti,j .9959 .0041
Activatedti,j .0057 .9943

)
(20)

20 dynr: Dynamic Modeling in R

which implies that both the Deactivated and the Activated Regimes are strongly persistent
with high self-transistion probabilities. Next we consider some of the visualization options for
serving a model.

The default plot() method is used to visualize the time series in a collection of plots: (1) a
plot of time series created by dynr.ggplot() (or autoplot()), (2) a histogram of predicted
regimes, and (3) a plot of equations created by plotFormula().

R> plot(yum, dynrModel = rsmod, style = 1, textsize = 5)

The dynr.ggplot() (or autoplot()) method creates a plot of the smoothed state estimates
overlaying the predicted regimes. It needs the result object and model object as inputs, and
allows for plotting (1) user-selected smoothed state variables by default and (2) user-selected
observed-versus-predicted values by setting a style to 2. An illustrative plot is created from
the code below and shown in Figure 1(B).

R> dynr.ggplot(yum, dynrModel = rsmod, style = 1,

+ names.regime = c("Deactivated", "Activated"),

+ title = "(B) Results from RS-AR model", numSubjDemo = 1,

+ shape.values = c(1),

+ text = element_text(size = 16),

+ is.bw = TRUE)

This shows that for the first 99 seconds the participant is in the Deactivated Regime, with
their EMG data varying according to the lower autocorrealtion model and having no relation
to the variation in the self-reported emotional data in Figure 1(A). Then the participant
switches to the Activated Regime and their data become more strongly autocorrelated and
coupled to the self-report data. There follows a brief period in the Deactivated Regime around
time=130 seconds with a subsequent return to the Activated Regime for the remainder of the
observation.

For all users, the plotFormula() method can be used to display equations on R plots. Equa-
tions can be viewed in several ways after the model is specified: (1) with free parameter
names and fixed values, as illustrated here in Figure 2(A), (2) with parameter starting values,
or (3) after estimation with fitted parameter values as in Figure 2(B). Each of these desired
characteristics can be embedded in the neatly typeset equations. The ParameterAs argument
changes which of these characteristics is used in the equations. Here the user-supplied param-
eter names and estimated parameters are typeset in Figure 2 because ParameterAs was re-
spectively given rsmod$param.names, namely, the parameter names stored in the dynrModel

object, rsmod, and coef(yum), namely, the estimated free parameter values stored in the
dynrCook object, yum. Starting values for parameters are also possible values for this argu-
ment. The plotFormula() method does not require the user to install LATEX facilities and
compile LATEX code in a separate step, and hence are convenient to use. To maximize the
readability of the equations, it is only shown here using equations for the dynamic model
and measurement model, which can be obtained by respectively setting the printDyn and
printMeas arguments to true.

R> plotFormula(dynrModel = rsmod, ParameterAs = rsmod$param.names,

+ printDyn = TRUE, printMeas = TRUE) +

Lu Ou, Michael D. Hunter, Sy-Miin Chow 21

+ ggtitle("(A)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

R> plotFormula(dynrModel = rsmod, ParameterAs = coef(yum),

+ printDyn = TRUE, printMeas = TRUE) +

+ ggtitle("(B)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

We can see that the equations in Figure 2(A) are precisely those from Equations 9 and 10
which we used to define the model except that we have fixed β1 to zero. If these equations
did not match, it may indicate that we made a mistake in our model specification.

Dynamic Model

Regime 1:

η(t+1) = φ1 × η(t) + w1(t)

Regime 2:

η(t+1) = φ2 × η(t) + w1(t)

Measurement Model

Regime 1:

iEMG = 0 × SelfReport + µ1 + η

Regime 2:

iEMG = β2 × SelfReport + µ2 + η

(A)

Dynamic Model

Regime 1:

η(t+1) = 0.27 × η(t) + w1(t)

Regime 2:

η(t+1) = 0.47 × η(t) + w1(t)

Measurement Model

Regime 1:

iEMG = 0 × SelfReport + 4.55 + η

Regime 2:

iEMG = 0.46 × SelfReport + 4.75 + η

(B)

Figure 2: Automatic plots of model equations with (A) parameter names and (B) estimated
parameters for the regime-switching linear state-space model.

Finally, for LATEX users, the printex() method helps generate equations for the model in
LATEX form.

R> printex(rsmod,

+ ParameterAs = rsmod$param.names,

+ printInit = TRUE, printRS = TRUE,

+ outFile = "RSLinearDiscreteYang.tex")

The ParameterAs argument functions the same as that in the plotFormula() method.
Here we have selected to use the names of the free parameters as evidenced by giving
rsmod$param.names to the ParameterAs argument. In this case the initial conditions and

22 dynr: Dynamic Modeling in R

regime-switching functions are included in the equations, as indicated by the printInit and
printRS arguments being set to true. The LATEX code for the equations is written to the file
specified, “RSLinearDiscrete.tex”, which the user can then work with and modify as he/she
wishes. Of course, this function is designed more as a convenience feature for users who are
already using LATEX as a writing tool and requires all the LATEX-related facilities already in
place on the user’s computer. If so desired, the tex file can also be compiled within R and
viewed as a pdf via the texi2pdf() function in the tools library:

R> tools::texi2pdf("RSLinearDiscreteYang.tex")

R> system(paste(getOption("pdfviewer"), "RSLinearDiscreteYang.pdf"))

This example has used real EMG data from a previous study (Yang and Chow 2010) to
illustrate many parts of the user-interface for dynr. A complete working example can be
found as part of the package demos using demo(RSLinearDiscreteYang). Of particular note
are the various “serving” functions which allow users to both verify their model and examine
their results in presentation-ready formats. In the next example, we will use simulated data
to further illustrate features of dynr, especially the nonlinear formula interface for dynamics.

6. Example 2: Nonlinear continuous-time models

As extensions of linear models, nonlinear dynamic models incorporate nonlinearities into the
change processes. Such nonlinearities may take the form of interactions between components
of a system, and have many useful applications across different scientific disciplines. In the
study of human dynamics, for instance, many processes are characterized by changes that
are dependent on interactions with other processes. Nonlinear ordinary differential equa-
tions have been used to model, among other phenomena, ovulatory regulation (Boker, Neale,
and Klump 2014), circadian rhythms (Brown and Luithardt 1999), cerebral development
(Thatcher 1998), substance use (Boker and Graham 1998), cognitive aging (Chow and Nes-
selroade 2004), parent-child interactions (Thomas and Martin 1976), couple dynamics (Chow
et al. 2007; Gottman 2002); and sudden transitions in attitudes (van der Maas, Kolstein, and
van der Pligt 2003).

6.1. Single-regime nonlinear continuous-time model

To facilitate the specification of more complex dynamic models, especially those that involve
the use of specialized mathematical functions (e.g., trigonometric, power, logistic and expo-
nential functions), or those for which the user would rather not specify in matrix form, dynr
provides users with a formula interface that can accommodate nonlinear as well as linear
dynamic functions. To illustrate the use of the formula interface in dynr, we use a bench-
mark nonlinear ordinary differential equation model, the predator-prey model (Lotka 1925;
Volterra 1926; Hofbauer and Sigmund 1988). The predator-prey model is a classic model for
representing the nonlinear dynamics of interacting populations or components of any system
of interest. In this model, there are two populations, one of predators (e.g., foxes) and another
of prey (e.g., rabbits). The food supply of the prey is assumed to be unbounded, but the food
supply of the predators is the prey. As the predator population grows, they decrease the prey
population. Consequently, as the prey population shrinks, the predator population must also
decrease with its diminishing food supply. The most often cited behavior of the predator-prey

Lu Ou, Michael D. Hunter, Sy-Miin Chow 23

system while in a particular parameter range is ongoing oscillations in the predator and prey
populations with a phase lag between them.

The utility of the predator-prey model extends far beyond the area of population dynamics.
Direct applications or extensions of this predator-prey system include the epidemic models of
the onset of social activities (EMOSA) used to study the spread of smoking, drinking, delin-
quency, and sexual behaviors among adolescents (Rodgers and Rowe 1993; Rodgers, Rowe,
and Buster 1998), the cognitive aging model (Chow and Nesselroade 2004), and the model
of couples’ affect dynamics (Chow et al. 2007). In the EMOSA, smokers (predators) may in-
teract with non-smokers (prey) to produce varying numbers of smokers and nonsmokers over
time depending on the parameters of the system. Likewise, romantic couples may mutually
drive their partners’ affective states through ongoing interactions with each other, creating
novel and testable hypotheses about human behavior.

Written as a differential equation, the predator-prey model is expressed as:

d(prey(t)) = (a prey(t)− b prey(t) predator(t)) dt (21)

d(predator(t)) = (−c predator(t) + d prey(t) predator(t)) dt (22)

where the parameters a, b, c, d are all constrained to be greater than or equal to 0. These
equations make up the continuous-time dynamics for this system (i.e., the special case of
Equation 1 for this model). Examining the prey equation (Equation 21), the prey population
would increase exponentially without bound if there were zero predators. Similarly, examining
the predator equation (Equaltion 22), if the prey population was zero, then the predator
population would decrease exponentially to zero (i.e., go extinct).

Using the formula interface in dynr, which supports all native mathematical functions avail-
able in R, the predator-prey model can be specified as:

R> preyFormula <- prey ~ a * prey - b * prey * predator

R> predFormula <- predator ~ - c * predator + d * prey * predator

R> ppFormula <- list(preyFormula, predFormula)

R> ppDynamics <- prep.formulaDynamics(formula = ppFormula,

+ startval = c(a = 2.1, c = 0.8, b = 1.9, d = 1.1),

+ isContinuousTime = TRUE)

The first argument of the prep.formulaDynamics() function is formula. More specifically,
this is a list of formulas. Each element in the list is a single, univariate, formula that defines
a differential (if isContinuousTime = TRUE) or difference (if isContinuousTime = FALSE)
equation. There should be one formula for every latent variable, in the order in which the la-
tent variables are specified by using the state.names argument in prep.measurement(). The
left-hand side of each formula is either the one-step-ahead projection of the latent variable (in
the discrete-time case) or the differential of the latent variable (in the continuous-time case),
namely, the left-hand-side of Equations 2 and 1, respectively. In both cases, users only need to
specify the names of the latent variables that match the specification in prep.measurement()

on the left-hand side of the formulas. The right-hand side of each formula gives a (linear or
possibly nonlinear) function that may involve free or fixed parameters, numerical constants,
exogenous covariates, and other arithmetic/mathematical functions that define the dynamics
of the latent variables. The startval argument is a named vector giving the names of the
free parameters and their starting values. Just as in the prep.matrixDynamics() function,

24 dynr: Dynamic Modeling in R

the isContinuousTime argument is a binary flag that defines the switch between continuous-
and discrete-time modeling. The rest of dynr code for fitting the predator-prey model can
be specified in similar ways to the code shown in Example 1 and is omitted here for space
constraints. A fully functional demo script can be found as one of the demos in dynr using
demo(NonlinearODE).

With the formula interface, it is important to note that dynr uses the D() function from the
stats package to automatically and symbolically differentiate the formulas provided. Hence,
dynr uses the analytic Jacobian of the dynamics in its extended Kalman filter, greatly in-
creasing its speed and accuracy. The D() function can handle the differentiation of functions
involving parentheses, arithmetic operators (e.g., +, −, ∗, /, and ˆ) and numerous mathe-
matical functions (e.g., exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos,
atan, gamma, and so on). Thus, for a very large class of nonlinear functions, the user is spared
from the need to supply the analytic Jacobian of the dynamic functions of interest to use
the extended Kalman filter functionality in dynr. However, automatic differentiation will not
work for all formulas. For instance, formulas involving the absolute value function cannot be
symbolically differentiated. For formulas that cannot be differentiated automatically using
the stats package, the user must provide the analytic first derivatives through the jacobian

argument (check demo(RSNonlinearDiscrete) for an example).

6.2. Regime-switching extension

Just as with the prep.matrixDynamics(), the formula interface also allows for regime-
switching functionality. Consider an extension of the classical predator-prey model. It is
likely that the prey and predator interaction follow seasonal patterns. Hypothetically, we
assume that in warmer seasons (i.e., “summer” environment), the interactions follow a clas-
sical predator-prey model, but in colder seasons (i.e., “winter” environment), the food source
(e.g., grass) of the prey becomes limited and the predator species is able to find an additional
food source due to the weather. So in the colder seasons the prey or predator population
will not go to extreme values in absence of the other species. We thus consider the following
regime-switching version of the predator-prey model to capture the potential seasonal changes
in the interaction patterns. In the Summer regime, we have the predator-prey model as pre-
viously described, but in the Winter regime we now have a predator-prey model characterized
by within-species competition and limiting growth/decay. In this competitive predator-prey
model, the two populations do not grow/decline exponentially without bound in absence of
the other, but rather, they grow logistically up to some finite carrying capacity. This logistic
growth adds to the between-species interactions with the other population. This model can
be specified as:

R> cPreyFormula <- prey ~ a * prey - e * prey ^ 2 - b * prey * predator

R> cPredFormula <- predator ~

+ f * predator - c * predator ^ 2 + d * prey * predator

R> cpFormula <- list(cPreyFormula, cPredFormula)

where the predator and prey equations are combined and supplied as a list.

To specify the regime-switching predator-prey model, we combine the classical predator-prey
model and the predator-prey model with within-species competition into a list of lists. Then
we provide this list to the usual prep.formulaDynamics() function as the formula argument.

Lu Ou, Michael D. Hunter, Sy-Miin Chow 25

R> rsFormula <- list(ppFormula, cpFormula)

R> dynm <- prep.formulaDynamics(formula = rsFormula,

+ startval = c(a = 2.1, c = 3, b = 1.2, d = 1.2, e = 1, f = 2),

+ isContinuousTime = TRUE)

We have simulated the data with true parameter values: a = 2, b = 1, c = 4, d = 1, e =
.25, f = 5. The phase portraits of the classical predator-prey model (Summer regime) and
the cometitive predator-prey model (i.e., Winter regime) are shown in Figure 3 created by the
phaseR R package (Grayling 2014), where the two axes respectively represent the population
size of the two species. In Figure 3(A), there is a reciprocal relation between the prey and
predator population, whereas in Figure 3(B), there is an attractor or equilibrium state at
(1.5, 1.625), toward which the system tends to evolve.

0 2 4 6 8

0
2

4
6

8

(A)

prey

pr
ed

at
or

0 2 4 6 8

0
2

4
6

8

(B)

prey

pr
ed

at
or

Figure 3: The phase portraits of (A) a classical predator-prey model and (B) a predator-prey
model with within-species competition and limiting growth/decay.

Many dynamic models may only lead to permissible (e.g., finite) values in particular parame-
ter ranges. As such, we often need to add constraints to model parameters in fitting dynamic
models. One way of doing this in dynr is to apply unconstrained optimization while trans-
forming the parameters onto their constrained scales during function evaluations. This can be
accomplished in dynr through the function prep.tfun(). For example, based on the nature of
the predator and prey dynamics, the a-f parameters should, by right, take on positive values.
Thus, we may choose to optimize their log-transformed values and exponentiate the uncon-
strained parameter values during likelihood evaluations to ensure that the values of these
parameter estimates are always positive. To achieve this, we supply a list of transformation
formulas to the formula.trans argument in the prep.tfun() function as follows:

R> tformList <- list(a ~ exp(a), b ~ exp(b), c ~ exp(c),

+ d ~ exp(d), e ~ exp(e), f ~ exp(f))

26 dynr: Dynamic Modeling in R

R> tformInvList <- list(a ~ log(a), b ~ log(b), c ~ log(c),

+ d ~ log(d), e ~ log(e), f ~ log(f))

R> trans<-prep.tfun(

+ formula.trans = tformList,

+ formula.inv = tformInvList)

In cases involving the use of such constraint functions, the delta method is used to perform ap-
propriate transformations to the covariance matrix of the parameter estimates at convergence
to yield standard error estimates for the parameters on the constrained scales. If the starting
values of certain parameters are indicated on a constrained scale, the formula.inv argument
should give a list of inverse transformation formulas to transform the specified starting values
to unconstrained scales for optimization.

In our hypothetical example, we have discussed how the weather condition may govern the
regime switching processes. Specifically, we assume a covariate cond (with a value of 0 indi-
cating the warmer weather and 1 indicating the colder weather) has an effect on the regime-
switching transition probabilities. Then, we can specify the logistic regression model by

R> rmat <- matrix(

+ c(0, 0, -1, 1.5,

+ 0, 0, -1, 1.5),

+ nrow = 2, ncol = 4, byrow = T)

R> pmat <- matrix(

+ c("fixed", "fixed", "int_1", "slp_1",

+ "fixed", "fixed", "int_2", "slp_2"),

+ nrow = 2, ncol = 4, byrow = T)

R> regimes <- prep.regimes(

+ values = rmat,

+ params = pmat,

+ covariates = "cond")

In essence, the above code creates the following matrix in the form of Equation 11[
c11 = 0 d11 = 0 c12 = int1 = −1 d12 = slp1 = 1.5

c21 = 0 d21 = 0 c22 = int2 = −1 d22 = slp2 = 1.5

]
, (23)

which in turn creates the following transition probability matrix.


Summerti,j+1 Winterti,j+1

Summerti,j
exp(0+0×cond)

exp(0+0×cond)+exp(int1+slp1×cond)
exp(int1+slp1×cond)

exp(0+0×cond)+exp(int1+slp1×cond)

Winterti,j
exp(0+0×cond)

exp(0+0×cond)+exp(int2+slp2×cond)
exp(int2+slp2×cond)

exp(0)+exp(int2+slp2×cond)

 (24)

Here we consider the Summer regime as the reference regime, so the first two columns of the
transition LO matrix (Equation 23) are fixed at zero. The third and fourth columns of the
transition LO matrix respectively correspond to the regression intercepts and slopes associated
with the covariate, whose starting values are respectively set at -1 and 1.5. With this set of
starting values, the transition probability from any regime to the Summer regime is .73 when
cond = 0, and .38 when cond = 1. The negative intercept implies that in warmer days (cond

Lu Ou, Michael D. Hunter, Sy-Miin Chow 27

= 0), there is a greater chance of the process transitioning into the Summer regime, and the
regression slope greater than the absolute value of the intercept suggests that in colder days
(cond = 1), the transition into the Winter regime is more likely.

We fitted the specified model to the simulated data. Figure 4 is created by the plotFormula()
method and presents the model equations with parameter names and estimated parameter
values. Figure 5 is created from the dynr.ggplot() (or autoplot()) method with style set
to 2, and shows that the predicted trajectories match with the observed values and alternate
between different regimes. A complete modeling script for this example can be retrieved using
demo(RSNonlinearODE).

R> plotFormula(model2.2, ParameterAs = model2.2$param.names) +

+ ggtitle("(A)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

R> plotFormula(model2.2, ParameterAs = coef(res2.2)) +

+ ggtitle("(B)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

R> dynr.ggplot(res2.2, model2.2, style = 2,

+ names.regime = c("Summer", "Winter"),

+ title = "", idtoPlot = 9,

+ text = element_text(size = 16))

Dynamic Model

Regime 1:

d(prey(t)) = (a × prey(t) − b × prey(t) × predator(t))dt

d(predator(t)) = (−c × predator(t) + d × prey(t) × predator(t))dt

Regime 2:

d(prey(t)) = (a × prey(t) − e × prey(t)2 − b × prey(t) × predator(t))dt

d(predator(t)) = (f × predator(t) − c × predator(t)2 + d × prey(t) × predator(t))dt

Measurement Model

x = prey + ε1

y = predator + ε2

(A)

Dynamic Model

Regime 1:

d(prey(t)) = (1.98 × prey(t) − 0.99 × prey(t) × predator(t))dt

d(predator(t)) = (−3.97 × predator(t) + 0.99 × prey(t) × predator(t))dt

Regime 2:

d(prey(t)) = (1.98 × prey(t) − 0.23 × prey(t)2 − 0.99 × prey(t) × predator(t))dt

d(predator(t)) = (4.94 × predator(t) − 3.97 × predator(t)2 + 0.99 × prey(t) × predator(t))dt

Measurement Model

x = prey + ε1

y = predator + ε2

(B)

Figure 4: Automatic plots of model equations with (A) parameter names and (B) estimated
parameters for the regime-switching nonlinear ODE model.

7. Other miscellaneous control options

In parameter estimation, dynr utilizes a sequential quadratic programming algorithm (Kraft
1988, 1994) available from an open-source library for nonlinear optimization — NLOPT (John-
son 2008). By default, we do not set boundaries on the parameters to be estimated. However,

28 dynr: Dynamic Modeling in R

9

0 10 20 30

0

2

4

6

8

time

V
al

ue
s

regime Summer Winter variable x.observed x.predicted y.observed y.predicted

Figure 5: Built-in plotting feature for the predicted trajectories with observed values for the
regime-switching nonlinear ODE model.

one can set the upper and lower boundaries of the estimated parameter values by respectively
modifying the ub and lb slots of the model object of class dynrModel. An example is given
as below to constrain the int1 and int2 parameters to be negative between -10 and 0, while
limiting the values of slp1 and slp2 to positive within a range from 0 to 10:

R> model2.2$ub[c("int_1", "int_2", "slp_1", "slp_2")] <- c(0, 0, 10, 10)

R> model2.2$lb[c("int_1", "int_2", "slp_1", "slp_2")] <- c(-10, -10, 0, 0)

Similarly, the stopping criteria of the optimization algorithm can be modified through the
options slot of the dynrModel object, which is a list consisting of specifications on the
relative tolerance on optimization parameters (xtol_rel), the stopping threshold of the ob-
jective value (stopval), the absolute and relative tolerance on function value (i.e., ftol_abs
and ftol_rel), the maximum number of function evaluations (maxeval), the maximum op-
timization time (in seconds; maxtime).

The output of the estimation function, dynr.cook(), is an object of class dynrCook. It
not only includes estimation results that can be displayed in the summary table produced
by summary(), but also contains information on posterior regime probabilities (i.e., the
pr_t_given_T slot), smoothed state estimates of the latent variables (i.e., η̂i(ti,j |Ti) =
E(ηi(ti,j)|Yi(Ti)) in the eta_smooth_final slot), and smoothed error covariance matrices
of the latent variables (i.e., Pi(ti,j |Ti) in the error_cov_smooth_final slot) at all available
time points. They can be retrieved by using the $ operator.

8. Discussion and conclusions

This paper has introduced the dynr package. The increasing availability of ILD, particularly

Lu Ou, Michael D. Hunter, Sy-Miin Chow 29

in the social and behavioral sciences, has created a need for software specifically aimed at
broad swaths of the social and behavioral science community. Such software require the
capability of representing changes in latent variables over time in multiple people, possibly
with discontinuous shifts in processes (i.e., regime switching). The interface for any package
aimed at the broader community of researchers needs to carefully balance intuitive usability
with a degree of flexibility in the specification to allow simple models to be written quickly
while not limiting the user to only simple models. The dynr package attempts to meet these
requirements and satisfy these needs.

The modeling framework embraced by dynr includes linear and nonlinear varieties of state-
space modeling and differential equations as special cases. That is, dynr offers linear and
nonlinear time series methods for latent variables in both the traditional discrete-time models
and in the hybrid continuous-time models that have discrete measurements with continuous
underlying processes. Additionally, regime-switching can be layered on top of any aspect
of these models. To our knowledge, no other software allows for regime-switching nonlinear
dynamics with latent variables. However, currently dynr only allows nonlinearity in the dy-
namics (i.e., in how the latent variables change over time) but not the measurement part of
the model (i.e., in how the latent variables map onto the observed variables) to capitalize
on the availability of a Gaussian approximate log-likelihood function for fast parameter esti-
mation. Future extensions will incorporate Markov chain Monte Carlo (MCMC) techniques
(e.g., Chow, Tang, Yuan, Song, and Zhu 2011; Durbin and Koopman 2001; Kim and Nel-
son 1999; Lu, Chow, Sherwood, and Zhu 2015) and pertinent frequentist-based estimation
techniques (e.g., Fahrmeir and Tutz 1994) to accommodate a broader class of measurement
models consisting of nonlinear functions and non-Gaussian densities.

Of course, numerous other programs exist for time series modeling, including ones for latent
variable time series. Even though dynr can specify some models that these programs cannot,
all of the features of these programs are not subsets of dynr. For example, KFAS allows
for nonlinear measurement (Helske 2016) which is not currently possible in dynr. Moreover,
SsfPack has nonlinear measurement capabilities along with many MCMC methods that dynr
lacks (Koopman et al. 1999). The pomp package likewise has several features overlapping
with dynr, but has also implemented several algorithms absent in dynr. pomp lists among
its features hidden Markov models, state-space models, both of which can be discrete- or
continuous-time, non-Gaussian, and nonlinear. pomp utilizes MCMC methods, Bayesian
methods, particle filtering, as well as ensemble filtering and forecasting. However, pomp does
not currently support regime-switching functionality beyond the regime switching found in
hidden Markov modeling. Finally, facilities for multisubject designs are absent from these
programs.

We have shown examples using dynr involving electromyography (EMG) data, and classic
problems of predator-prey interaction. The EMG example made use of linear discrete-time
modeling with regime-switching; whereas the predator-prey example included single-regime
and regime-switching variations, both of which showcased the formula interface for creating
nonlinear dynamics. These examples highlighted the use of recipe objects to prepare com-
ponents of the model. The recipes divide the full model into meaningful conceptual chunks
for ease of specification and interactive inspection. The recipes seamlessly handle various
bookkeeping tasks like the creation and management of the free parameter vector and how
free parameters map onto model components. This is in contrast to several other packages
that require the user to do this management, often writing their own functions in the process.

30 dynr: Dynamic Modeling in R

In addition to sparing the user sundry bothersome tasks, the recipes allow for interactive error
checking and model verification. The contents of each recipe can be printed in the R console,
letting the user verify that the recipe they intended to specify was actually created. Along
this vein, plotFormula() allows the user to see nicely formatted equations for their models
directly in R, and printex() outputs LATEX equations for their models which can be typeset
immediately or modified for inclusion in manuscripts, presentations, and reports.

The cosmetic assets of the reporting features are complemented by remarkable speed in esti-
mating models. All of the filtering code that produces the likelihood function for each model is
written entirely in C, but this does not make dynr unique or give it computational advantage
over many R packages. However, the optimization routine SLSQP (Kraft 1988, 1994) from
the NLOPT (Johnson 2008) library keeps the entire likelihood evaluation and optimization
in C. This strategy greatly reduces memory copying between R and C during optimization
and does improve performance. Although a full performance comparison between packages
is beyond the scope of the present work, early tests indicate that dynr is quite fast, readily
estimating models with over a thousand rows of data in just a few seconds.

In addition to the need to accommodate a greater range of measurement functions/densities
in the future, several other extensions are being pursued and implemented in the dynr pack-
age. For example, dynr currently handles missingness in the dependent variables via full-
information maximum likelihood but does not allow for missingness in the covariates. Future
plans include interfacing dynr with R packages such as mice (van Buuren and Groothuis-
Oudshoorn 2011) to handle missingness in the covariates and/or dependent variables via
multiple imputation. Further, models with nonlinearities at the dynamic level currently are
not supported by well-established fit indices for evaluating and assessing model fit. While
dynr provides the AIC (Akaike 1973) and the BIC (Schwarz 1978) for model comparison
purposes. The tenability of using these model comparison criteria for comparing models in-
volving nonlinearities at the dynamic level is yet to be investigated when the log-likelihood
function to be optimized involves approximations and truncation errors. Finally, even though
difference and differential equations have served as and remained one of the most popular
modeling tools across myriad scientific disciplines, their use is still nascent in particular areas
of the social and behavioral sciences. Tools to aid model developments and explorations (e.g.,
Chow, Bendezú, Cole, and Ram 2016; Ramsay, Hooker, and Graves 2009) are important
extensions to enable and promote modeling efforts utilizing difference/differential equations.
Fortunately, several existing packages in R offer many of the functionalities to support these
modeling endeavors and may be used in conjunction or interfaced in the future with dynr for
these purposes.

Even though dynamic models can be used to mathematically represent some of the theoretical
postulates in social and behavioral sciences, the lack of readily accessible tools for evaluating
more complex dynamic models contributes to the scarcity of modeling work along this line. In
this paper, we provided two illustrative examples of the dynr package for analyzing time series
data. By alleviating difficulties involved in the specification and estimation of the models, the
dynamic modeling framework we present can serve as a valuable tool for evaluating substantive
questions regarding human dynamic processes that are otherwise difficult to test within other
frameworks. The dynr package allows users free access to computationally efficient algorithms
from a simple and easy-to-learn interface for a broad class of linear and nonlinear, discrete-
and continuous-time models. With robust, efficient, and accessible estimation algorithms, the
application of dynamic models to ILD research will be more embraced and the quality of the

Lu Ou, Michael D. Hunter, Sy-Miin Chow 31

work will be enhanced. As a result, ILD research will become increasingly viable and continue
to illuminate processes and correlates of change that can lead to evidence-based prevention
and intervention programs that has the potential to change our lives.

References

Akaike H (1973). “Information Theory and an Extension of the Maximum Likelihood Prin-
ciple.” In BN Petrov, F Csaki (eds.), Second International Symposium on Information
Theory, pp. 267–281. Akademiai Kiado, Budapest.

Anderson BDO, Moore JB (1979). Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ.

Ansley CF, Kohn R (1985). “Estimation, Filtering and Smoothing in State Space Models
with Incompletely Specified Initial Conditions.” The Annals of Statistics, 13, 1286–1316.
doi:10.1214/aos/1176349739.

Bar-Shalom Y, Li XR, Kirubarajan T (2001). Estimation with Applications to Tracking and
Navigation: Theory Algorithms and Software. John Wiley & Sons, New York, NY.

Boker SM, Graham J (1998). “A Dynamical Systems Analysis of Adolescent Substance Abuse.”
Multivariate Behavioral Research, 33(4), 479–507. doi:10.1207/s15327906mbr3304_3.

Boker SM, Neale MC, Klump KL (2014). “A Differenial Equations Model for the Ovarian
Hormone Cycle.” In PCM Molenaar, RM Lerner, KM Newell (eds.), Handbook of Develop-
mental Systems Theory and Methodology, pp. 369–391. New York, NY.

Bolger N, Laurenceau JP (2013). Intensive Longitudinal Methods: An Introduction to Diary
and Experience Sampling Research. Guilford Press, New York, NY.

Brown EN, Luithardt H (1999). “Statistical Model Building and Model Criticism for Hu-
man Circadian Data.” Journal of Biological Rhythms, 14, 609–616. doi:10.1177/

074873099129000975.

Byrom B, Tiplady B (2010). ePRO: Electronic Solutions for Patient-Reported Data. Gower,
Farnham, England.

Cacioppo JT, Petty R (1981). “Electromyograms as Measures of Extent and Affectivity of
Information Processing.” American Psychologist, 36, 441–456. doi:10.1037//0003-066x.
36.5.441.

Cacioppo JT, Petty RE, Losch ME, Kim HS (1986). “Electromyographic Activity over Facial
Muscle Regions Can Differentiate the Valence and Intensity of Affective Reactions.” Journal
of Personality and Social Psychology, 50(2), 260–268. doi:10.1037//0022-3514.50.2.

260.

Chow SM, Bendezú JJ, Cole PM, Ram N (2016). “A Comparison of Two-Stage Approaches for
Fitting Nonlinear Ordinary Differential Equation (ODE) Models with Mixed Effects.” Mul-
tivariate Behavioral Research, 51(2–3), 154–184. doi:10.1080/00273171.2015.1123138.

http://dx.doi.org/10.1214/aos/1176349739
http://dx.doi.org/10.1207/s15327906mbr3304_3
http://dx.doi.org/10.1177/074873099129000975
http://dx.doi.org/10.1177/074873099129000975
http://dx.doi.org/10.1037//0003-066x.36.5.441
http://dx.doi.org/10.1037//0003-066x.36.5.441
http://dx.doi.org/10.1037//0022-3514.50.2.260
http://dx.doi.org/10.1037//0022-3514.50.2.260
http://dx.doi.org/10.1080/00273171.2015.1123138

32 dynr: Dynamic Modeling in R

Chow SM, Ferrer E, Nesselroade JR (2007). “An Unscented Kalman Filter Approach to the
Estimation of Nonlinear Dynamical Systems Models.” Multivariate Behavioral Research,
42(2), 283–321. doi:10.1080/00273170701360423.

Chow SM, Grimm KJ, Guillaume F, Dolan CV, McArdle JJ (2013). “Regime-Switching
Bivariate Dual Change Score Model.” Multivariate Behavioral Research, 48(4), 463–502.
doi:10.1080/00273171.2013.787870.

Chow SM, Ho MHR, Hamaker EJ, Dolan CV (2010). “Equivalences and Differences between
Structural Equation and State-Space Modeling Frameworks.” Structural Equation Modeling,
17, 303–332. doi:10.1080/10705511003661553.

Chow SM, Nesselroade JR (2004). “General Slowing or Decreased Inhibition? Mathematical
Models of Age Differences in Cognitive Functioning.” Journals of Gerontology B, 59(3),
101–109. doi:10.1093/geronb/59.3.P101.

Chow SM, Ou L, Ciptadi A, Prince E, Rehg JM, Rozga A, Messinger DS (Under review).
“Differential Equation Modeling Approaches to Representing Sudden Shifts in Intensive
Dyadic Interaction Data.” Psychometrika.

Chow SM, Tang N, Yuan Y, Song X, Zhu H (2011). “Bayesian Estimation of Semipara-
metric Nonlinear Dynamic Factor Analysis Models using the Dirichlet Process Prior.”
British Journal of Mathematical and Statistical Psychology, 64(1), 69–106. doi:10.1348/

000711010x497262.

Chow SM, Witkiewitz K, Grasman RPPP, Maisto SA (2015). “The Cusp Catastrophe Model
as Cross-Sectional and Longitudinal Mixture Structural Equation Models.” Psychological
Methods, 20, 142–164. doi:10.1037/a0038962.

Chow SM, Zhang G (2013). “Nonlinear Regime-Switching State-Space (RSSS) Models.” Psy-
chometrika, 78(4), 740–768. doi:10.1007/s11336-013-9330-8.

De Jong P (1988). “The Likelihood for a State Space Model.” Biometrika, 75(1), 165–169.
doi:10.2307/2336450.

Dimberg U (1990). “Facial Electromyography and Emotional Reactions.” Psychophysiology,
27, 481–494. doi:10.1111/j.1469-8986.1990.tb01962.x.

Dimberg U, Thunberg M, Elmehed K (2000). “Unconscious Facial Reactions to Emotional
Facial Expressions.” Psychological Science, 11(1), 86–89. doi:10.1111/1467-9280.00221.

Dolan CV (2005). “MKFM6: Multi-group, Multi-subject Stationary Time Series Modeling
based on the Kalman Filter.” URL http://users/fmg.uva.nl/cdolan/.

Dolan CV (2009). “Structural Equation Mixture Modeling.” In RE Millsap, A Maydeu-
Olivares (eds.), The SAGE Handbook of Quantitative Methods in Psychology, pp. 568–592.
Sage, Thousand Oaks, CA.

Dolan CV, Jansen BR, Van der Maas HLJ (2004). “Constrained and Unconstrained Multivari-
ate Normal Finite Mixture Modeling of Piagetian Data.” Multivariate Behavioral Research,
39(1), 69–98. doi:10.1207/s15327906mbr3901_3.

http://dx.doi.org/10.1080/00273170701360423
http://dx.doi.org/10.1080/00273171.2013.787870
http://dx.doi.org/10.1080/10705511003661553
http://dx.doi.org/10.1093/geronb/59.3.P101
http://dx.doi.org/10.1348/000711010x497262
http://dx.doi.org/10.1348/000711010x497262
http://dx.doi.org/10.1037/a0038962
http://dx.doi.org/10.1007/s11336-013-9330-8
http://dx.doi.org/10.2307/2336450
http://dx.doi.org/10.1111/j.1469-8986.1990.tb01962.x
http://dx.doi.org/10.1111/1467-9280.00221
http://users/fmg.uva.nl/cdolan/
http://dx.doi.org/10.1207/s15327906mbr3901_3

Lu Ou, Michael D. Hunter, Sy-Miin Chow 33

Driver CC, Oud JHL, Voelkle MC (in press). “Continuous Time Structural Equation Mod-
elling with R Package ctsem.” Journal of Statistical Software.

Durbin J, Koopman SJ (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press, Oxford, United Kingdom.

Fahrmeir L, Tutz G (1994). Multivariate Statistical Modelling Based on Generalized Linear
Models. Springer–Verlag, New York, NY.

Fukuda K, Ishihara K (1997). “Development of Human Sleep and Wakefulness Rhythm during
the First Six Months of Life: Discontinuous Changes at the 7th and 12th Week after Birth.”
Biological Rhythm Research, 28, 94–103. doi:10.1076/brhm.28.3.5.94.13132.

Gilbert PD (2006 or later). Brief User’s Guide: Dynamic Systems Estimation. URL http:

//cran.r-project.org/web/packages/dse/vignettes/Guide.pdf.

Gottman JM (2002). The Mathematics of Marriage: Dynamic Nonlinear Models. The MIT
Press, Cambridge, MA.

Grayling MJ (2014). phaseR: Phase Plane Analysis of One and Two Dimensional Au-
tonomous ODE Systems. R package version 1.3, URL https://CRAN.R-project.org/

package=phaseR.

Grewal MS, Andrews AP (2008). Kalman Filtering: Theory and Practice using MATLAB.
Third edition. John Wiley & Sons, Hoboken, NJ.

Hamilton JD (1989). “A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business Cycle.” Econometrica, 57, 357–384. doi:10.2307/1912559.

Hamilton JD (1994). Time Series Analysis. Princeton University Press, Princeton, NJ.

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press, Cambridge, United Kingdom.

Helske J (2016). “KFAS: Exponential Family State Space Models in R.” Accepted to Journal
of Statistical Software.

Hofbauer J, Sigmund K (1988). The Theory of Evolution and Dynamical Systems: Math-
ematical Aspects of Selection (London Mathematical Society Student Texts). Cambridge
University Press. ISBN 0521358388. URL http://www.worldcat.org/isbn/0521358388.

Hosenfeld B (1997). “Indicators of Discontinuous Change in the Development of Analogical
Reasoning.” Journal of Experimental Child Psychology, 64, 367–395. doi:10.1006/jecp.

1996.2351.

Hyndman RJ (2016). “CRAN Task View: Time Series Analysis.” Online. Accessed on October
09, 2016., URL https://CRAN.R-project.org/view=TimeSeries.

Johnson SG (2008). The NLopt Nonlinear-Optimization Package. URL http://ab-initio.

mit.edu/nlopt.

Kalman RE (1960). “A New Approach to Linear Filtering and Prediction Problems.” Journal
of Basic Engineering, 82(1), 35–45. doi:10.1115/1.3662552.

http://dx.doi.org/10.1076/brhm.28.3.5.94.13132
http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
https://CRAN.R-project.org/package=phaseR
https://CRAN.R-project.org/package=phaseR
http://dx.doi.org/10.2307/1912559
http://www.worldcat.org/isbn/0521358388
http://dx.doi.org/10.1006/jecp.1996.2351
http://dx.doi.org/10.1006/jecp.1996.2351
https://CRAN.R-project.org/view=TimeSeries
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://dx.doi.org/10.1115/1.3662552

34 dynr: Dynamic Modeling in R

Kim CJ, Nelson CR (1999). State-Space Models with Regime Switching: Classical and Gibbs-
Sampling Approaches with Applications. MIT Press, Cambridge, MA.

Kohlberg L, Kramer R (1969). “Continuities and Discontinuities in Childhood and Adult
Moral Development.” Human development, 12(2), 93–120. doi:10.1159/000270857.

Koopman SJ, Shephard N, Doornik JA (1999). “Statistical Algorithms for Models in State
Space using SsfPack 2.2.” Econometrics Journal, 2(1), 113–166. doi:10.1111/1368-423X.
00023.

Kraft D (1988). “A Software Package for Sequential Quadratic Programming.” Technical
Report 88-28, DFVLR-FB, Oberpfaffenhofen, Germany.

Kraft D (1994). “Algorithm 733: TOMP — Fortran Modules for Optimal Control Calcu-
lations.” ACM Transactions on Mathematical Software, 20(3), 262–281. doi:10.1145/

192115.192124.

Kulikov GY, Kulikova MV (2014). “Accurate Numerical Implementation of the Continuous-
Discrete Extended Kalman Filter.” IEEE Transactions on Automatic Control, 59(1). doi:
10.1109/tac.2013.2272136.

Kulikova MV, Kulikov GY (2014). “Adaptive ODE Solvers in Extended Kalman Filtering
Algorithms.” Journal of Computational and Applied Mathematics, 262, 205–216. doi:

10.1016/j.cam.2013.09.064.

Lotka AJ (1925). Elements of Physical Biology. Williams & Wilkins, Baltimore, MD.

Lu ZH, Chow SM, Sherwood A, Zhu H (2015). “Bayesian Analysis of Ambulatory Cardiovas-
cular Dynamics with Application to Irregularly Spaced Sparse Data.” Annals of Applied
Statistics, 9, 1601–1620. doi:10.1214/15-AOAS846.

Muthén BO, Asparouhov T (2011). “LTA in Mplus: Transition Probabilities Influenced by
Covariates.” Mplus Web Notes: No. 13., URL http://www.statmodel.com/examples/

{LTA}webnote.pdf.

Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpatrick RM, Estabrook R,
Bates TC, Maes HH, Boker SM (2016). “OpenMx 2.0: Extended Structural Equation and
Statistical Modeling.” Psychometrika, 80(2), 535–549. doi:10.1007/s11336-014-9435-8.

Petris G (2010). “An R Package for Dynamic Linear Models.” Journal of Statistical Software,
36(12), 1–16. doi:10.18637/jss.v036.i12.

Petris G, Petrone S (2011). “State Space Models in R.” Journal of Statistical Software, 41(4),
1–25. doi:10.18637/jss.v041.i04.

Piaget J, Inhelder B (1969). The Psychology of the Child. Basic Books, New York, NY.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002). Numerical Recipes in C.
Cambridge University Press, Cambridge.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

http://dx.doi.org/10.1159/000270857
http://dx.doi.org/10.1111/1368-423X.00023
http://dx.doi.org/10.1111/1368-423X.00023
http://dx.doi.org/10.1145/192115.192124
http://dx.doi.org/10.1145/192115.192124
http://dx.doi.org/10.1109/tac.2013.2272136
http://dx.doi.org/10.1109/tac.2013.2272136
http://dx.doi.org/10.1016/j.cam.2013.09.064
http://dx.doi.org/10.1016/j.cam.2013.09.064
http://dx.doi.org/10.1214/15-AOAS846
http://www.statmodel.com/examples/{LTA}webnote.pdf
http://www.statmodel.com/examples/{LTA}webnote.pdf
http://dx.doi.org/10.1007/s11336-014-9435-8
http://dx.doi.org/10.18637/jss.v036.i12
http://dx.doi.org/10.18637/jss.v041.i04
http://www.R-project.org/

Lu Ou, Michael D. Hunter, Sy-Miin Chow 35

Ramsay JO, Hooker G, Graves S (2009). Functional Data Analysis with R and MATLAB.
Springer–Verlag, New York, NY.

Rodgers JL, Rowe DC (1993). “Social Contagion and Adolescent Sexual Behavior: A Develop-
mental EMOSA Model.” Psychological Review, 100(3), 479–510. doi:10.1037/0033-295X.
100.3.479.

Rodgers JL, Rowe DC, Buster M (1998). “Social Contagion, Adolescent Sexual Behavior,
and Pregnancy: a Nonlinear Dynamic EMOSA Model.” Developmental Psychology, 34(5),
1096–1113. doi:10.1037/0012-1649.34.5.1096.

Schnell S, Maini PK, Newman S, Newman TJ (eds.) (2008). Multiscale Modeling of Develop-
mental Systems. Series: Current Topics in Developmental Biology. Academic Press., New
York, NY.

Schwartz GE (1975). “Biofeedback, Self-regulation, and the Patterning of Physiological Pro-
cesses.” American Scientist, 63, 314–324.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Stone A, Shiffman S, Atienza A, Nebeling L (2008). The Science of Real-Time Data Capture:
Self-Reports in Health Research. Oxford University Press, NY.

Thatcher RW (1998). “A Predator-Prey Model of Human Cerebral Development.” In
KM Newell, PCM Molenaar (eds.), Applications of Nonlinear Dynamics to Developmental
Process Modeling, pp. 87–128. Lawrence Erlbaum, Mahwah, NJ.

The MathWorks, Inc (2016). MATLAB version 9.1 (R2016b). The MathWorks, Inc., Natick,
MA.

Thomas EA, Martin JA (1976). “Analyses of Parent-Infant Interaction.” Psychological Review,
83(2), 141–156. doi:10.1037/0033-295X.83.2.141.

Tiao GC, Tsay RS (1994). “Some Advances in Non-Linear and Adaptive Modelling in Time
Series.” Journal of Forecasting, 13, 109–131. doi:10.1002/for.3980130206.

Tong H, Lim KS (1980). “Threshold Autoregression, Limit Cycles and Cyclical Data.” Journal
of the Royal Statistical Society B, 42, 245–292. doi:10.1142/9789812836281_0002.

van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate Imputation by Chained
Equations in R.” Journal of Statistical Software, 45(3), 1–67. doi:10.18637/jss.v045.

i03.

van der Maas HLJ, Kolstein R, van der Pligt J (2003). “Sudden Transitions in Attitudes.”
Sociological Methods & Research, 32(125–152). doi:10.1177/0049124103253773.

van der Maas HLJ, Molenaar PCM (1992). “Stagewise Cognitive Development: An Ap-
plication of Catastrophe Theory.” Psychological Review, 99(3), 395–417. doi:10.1037/

/0033-295x.99.3.395.

http://dx.doi.org/10.1037/0033-295X.100.3.479
http://dx.doi.org/10.1037/0033-295X.100.3.479
http://dx.doi.org/10.1037/0012-1649.34.5.1096
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1037/0033-295X.83.2.141
http://dx.doi.org/10.1002/for.3980130206
http://dx.doi.org/10.1142/9789812836281_0002
http://dx.doi.org/10.18637/jss.v045.i03
http://dx.doi.org/10.18637/jss.v045.i03
http://dx.doi.org/10.1177/0049124103253773
http://dx.doi.org/10.1037//0033-295x.99.3.395
http://dx.doi.org/10.1037//0033-295x.99.3.395

36 dynr: Dynamic Modeling in R

van Dijk M, van Geert P (2007). “Wobbles, Humps and Sudden Jumps: A Case Study of
Continuity, Discontinuity and Variability in Early Language Development.” Infant and
Child Development, 16(1), 7–33. doi:10.1002/icd.506.

Volterra V (1926). “Fluctuations in the Abundance of a Species considered Mathematically.”
Nature, 118, 558–560. doi:10.1038/118558a0.

Yang M, Chow SM (2010). “Using State-Space Model with Regime Switching to Represent
the Dynamics of Facial Electromyography (EMG) Data.” Psychometrika: Application and
Case Studies, 74(4), 744–771. doi:10.1007/s11336-010-9176-2.

Affiliation:

Funding for this study was provided by NSF grant SES-1357666, NIH grants R01MH61388,
R01HD07699, R01GM105004, Pennsylvania State Quantitative Social Sciences Initiative, and
UL TR000127 from the National Center for Advancing Translational Sciences.

Lu Ou
Department of Human Development and Family Studies
The Pennsylvania State University
420 Biobehavioral Health Building
University Park, PA 16802
E-mail: lzo114@psu.edu

Michael D. Hunter
Center on Child Abuse and Neglect
University of Oklahoma Health Sciences Center
940 NE 13th St, Suite 4900
Oklahoma City, OK 73104
E-mail: mhunter1@ouhsc.edu

http://dx.doi.org/10.1002/icd.506
http://dx.doi.org/10.1038/118558a0
http://dx.doi.org/10.1007/s11336-010-9176-2
mailto:lzo114@psu.edu
mailto:mhunter1@ouhsc.edu

	Introduction
	General modeling framework
	Estimation procedures
	Discrete-time models
	Continuous-time models

	Steps for preparing and ``cooking'' a model
	Example 1: Regime-switching linear state-space model
	Example 2: Nonlinear continuous-time models
	Single-regime nonlinear continuous-time model
	Regime-switching extension

	Other miscellaneous control options
	Discussion and conclusions

