Overview

This tutorial is Part 4 of 5 showing how to do survival analysis with observational data (video recordings of participant behavior), using a study of children’s emotion regulation as an example (Cole et al., 2011) . This collection of tutorials accompanies Lougheed, Benson, Cole, & Ram (in press).

In this tutorial, we will demonstrate how to conduct a recurring episode model with time-invariant predictors. With this model, we examine between-child differences in children’s temperament with a time-invariant predictor, to examine if the time until recurring anger expressions vary by children’s negative affectivty.

Set-up

Set working directory and read in data

setwd("~/Desktop/Data/Survival analysis")

wait36 <- read.csv("Recurring event_time-invariant.csv",header=TRUE)
names(wait36)
## [1] "id"                     "ang_event"             
## [3] "episode"                "event_time"            
## [5] "negative_affectivity30"

Load packages:

library(plyr)
library(psych)
library(ggplot2)
library(survival)
library(gridExtra)
library(grid) 
library(reshape)

Subset to relevant variables:

wait36c <- wait36[,c("id","ang_event","episode", "event_time", "negative_affectivity30")]
head(wait36c)
##   id ang_event episode event_time negative_affectivity30
## 1  1         1       1         39                2.79375
## 2  1         1       2         15                2.79375
## 3  1         1       3         39                2.79375
## 4  1         1       4          3                2.79375
## 5  1         1       5        346                2.79375
## 6  1         1       6          8                2.79375

Center predictor to facilitate interpretation:

 wait36c$negative_affectivity30.c <- scale(wait36c$negative_affectivity30, scale=FALSE, center=TRUE)
 
 describe(wait36c$negative_affectivity30)
##    vars   n mean   sd median trimmed mad  min  max range skew kurtosis
## X1    1 921  3.6 0.58   3.65    3.59 0.6 2.27 4.96  2.68 0.06     -0.7
##      se
## X1 0.02

Outline

  • Step 1: Preliminary Considerations
  • Step 2: Data Preparation
  • Step 3: Data Description
  • Step 4: Model Building and Assessment of Fit to the Data
  • Step 5: Presentation and Interpretation of Results

Step 1: Preliminary Considerations

It is important to first determine the kind of model that will be used to answer research questions, as other steps (e.g., data preparation) will depend on what type of model will be fit. Specifically, researchers need to decide whether models will:

  • Be fit in discrete or continuous time
  • Include single or repeating occurrences of the dependent variable
  • Be fit with a non-parametric, semi-parametric, or parametric approach
  • Include predictors that are time invariant or time varying (or both)

With this model, we considered between-child differences in children’s temperament by examining if the time until recurring anger expressions varied by children’s negative affectivity. The data were coded in 1-second intervals, which implies the use of a continuous time model. We will use a semi-parametric approach (Cox regression model), because we do not know the shape of the underlying distribution (which precludes the use of a parametric approach) and because we want to incorporate multiple predictors (which is for several reasons not ideal with a non-parametric approach).


Step 2: Data Preparation

See Part 1 for data preparation steps


Step 3: Data Description

Now, we need to examine several characteristics of the data before we start modeling. Specifically, we need to examine:

  • How many cases in the data are right-censored. We already examined left censoring in Step 2 so we do not need to examine that further in Step 3.
  • How many ties (cases with exactly the same survival time) are present in the data. If a researcher has data with continuous time, a large number of ties could be problematic but this is unlikely with observational data. If a large number of ties are present, the researcher could aggregate time into discrete values and use a discrete-time model to overcome the presence of many ties.
  • The median survival time for each occurrence of anger. Standard descriptive statistics (mean, standard deviation) will not provide accurate information about survival analysis data because of censoring. The median survival time is used instead.
  • A plot of survival times to understand how survival times are distributed in the data.
  • Descriptive statistics for predictors in the model.

How Many Anger Episodes Per Child?

Calculate the number of anger episodes per child:

indiv.stats <- ddply(wait36c, "id", summarize, numepisodes = max(episode))

describe(indiv.stats$numepisodes)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 117 8.26 8.38      6    6.77 5.93   1  43    42 1.83     3.81 0.77
table(indiv.stats$numepisodes)
## 
##  1  2  3  4  5  6  7  8  9 10 11 12 15 16 17 18 19 20 23 24 25 33 34 41 43 
## 21 12 10 12  3  7  2 10  2  3  5  7  6  2  2  1  1  2  1  2  2  1  1  1  1

Median Survival Time per Episode and Ties

Order by survival time and create an order variable:

 indiv.stats3 <- ddply(wait36c,c("id","episode"),summarize,time2event = event_time)

 indiv.stats3  <- indiv.stats3[order(indiv.stats3$episode, -indiv.stats3$time2event),]
 
 indiv.stats3$order <- c(1:length(indiv.stats3$id))
 indiv.stats3 <- na.omit(indiv.stats3)

Create ordered survival time plot:

# #This finds the actual median episode time for each event (use these number for the vertical lines on the plot)
 medianepi <- ddply(indiv.stats3,"episode",summarize, medep = median(time2event))

# # Use this code for coloring the plot and figuring out where to put the episode numbers 
 medianepi <- ddply(indiv.stats3,"episode",summarize, medep = median(order))
 medianepi <- na.omit(medianepi)

ggplot(data=indiv.stats3, aes(x=time2event, y=order)) +
geom_rect(mapping = aes(xmin=0,xmax=indiv.stats3$time2event,ymin=indiv.stats3$order,
                        ymax=indiv.stats3$order+1,fill=factor(episode))) +
geom_rect(xmin=56,xmax=56,ymin=1,ymax=117,colour="black",linetype="dashed") +
geom_rect(xmin=22,xmax=22,ymin=118,ymax=213,colour="black",linetype="dashed") +
geom_rect(xmin=17,xmax=17,ymin=214,ymax=297,colour="black",linetype="dashed") +
geom_rect(xmin=17.5,xmax=17.5,ymin=298,ymax=371,colour="black",linetype="dashed") +
geom_rect(xmin=19.5,xmax=19.5,ymin=372,ymax=433,colour="black",linetype="dashed") +
scale_y_continuous(breaks=medianepi$medep[c(1,5,10,15,20,25,43)], labels = c(1,5,10,15,20,25,43)) +
xlab("Time in Task (seconds)") + ylab("Episode") +
ggtitle("Survival Time by Episode") +
 theme_classic() +
    theme(panel.grid.major=element_blank(),
          panel.grid.minor=element_blank(),
          panel.background=element_blank(),
          legend.position="none",
          axis.line.x = element_line(color = "black"),
          axis.line.y = element_line(color = "black"))


Step 4: Model Building, Estimation, and Assessment of Fit to the Data

We will now run our Cox regression models. First, we will fit a baseline model (intercept only; no predictors included) to examine the survival and cumulative hazard functions. Next, we will include child negative affectivity as a time-invariant predictor.

Cox Regression Model

The equation for this model is specified as,

\(h_{ij} (t)= h_{0} (t) exp(v_{i}) exp (\beta_{1}Negative Affectivity_{i})\)

where \(v_{i}\) is the random effect for the cluster (child).

Fit Cox Regression Model - Baseline

First, let’s look at the baseline survival function for the null model (no predictors). Here we won’t actually include the random effect for children so that we can obtain the plot using the survival package.

coxph3.0 <- coxph(Surv(event_time,ang_event) ~ 1,
                data = wait36c) 
summary(coxph3.0)
## Call:  coxph(formula = Surv(event_time, ang_event) ~ 1, data = wait36c)
## 
## Null model
##   log likelihood= -5254.73 
##   n= 966
modelfit <- survfit(coxph3.0)

#Create dataframe with baseline model information:
  modeldata <- data.frame(cbind(modelfit$time,modelfit$surv,modelfit$cumhaz,modelfit$upper,modelfit$lower))
  names(modeldata) <- c("time","surv","cumhaz","upperCI","lowerCI")

ggplot(data=NULL) +
  geom_line(data=modeldata,aes(x=time, y=surv),colour="black",linetype="solid",size=1) +
  geom_line(data=modeldata,aes(x=time, y=upperCI),colour="black",linetype="dashed",size=.5) +
  geom_line(data=modeldata,aes(x=time, y=lowerCI),colour="black",linetype="dashed",size=.5) +
  scale_x_continuous(breaks=seq(0,480,120)) +
  scale_y_continuous(breaks=seq(0,1,.25)) +
  expand_limits(x=c(0,480),y=c(0,1)) +
  xlab("Time in Task (seconds)") + ylab("Survival Function") +
theme_classic() +
theme(axis.line.x = element_line(color = "black"),
      axis.line.y = element_line(color = "black"))

Now let’s plot the cumulative hazard function:

ggplot(data=NULL) +
  geom_line(data=modeldata,aes(x=time, y=cumhaz),colour="black",linetype="solid",size=1) +
  scale_x_continuous(breaks=seq(0,480,120)) +
 # scale_y_continuous(breaks=seq(0,1,.25)) +
  #expand_limits(x=c(0,480),y=c(0,1)) +
  xlab("Time in Task (seconds)") + ylab("Cumulative Hazard Function") +
theme_classic() +
theme(axis.line.x = element_line(color = "black"),
      axis.line.y = element_line(color = "black"))

Now we will fit baseline/null model (no predictors) with the frailty term for child.

Note that for models using discrete time data, the “exact” option should be used for handling ties rather than the “efron” method, which we use (and is the default), below.

coxph3 <- coxph(Surv(event_time,ang_event) ~ frailty(id),
                data = wait36c) 
summary(coxph3)
## Call:
## coxph(formula = Surv(event_time, ang_event) ~ frailty(id), data = wait36c)
## 
##   n= 966, number of events= 873 
## 
##             coef se(coef) se2 Chisq DF    p
## frailty(id)                   501.7 95.03 0
## 
## Iterations: 8 outer, 48 Newton-Raphson
##      Variance of random effect= 0.7760718   I-likelihood = -5174 
## Degrees of freedom for terms= 95 
## Concordance= 0.682  (se = 0.012 )
## Likelihood ratio test= 428.9  on 95.03 df,   p=0
##### Commented section below out because it is causing problems knitting that do not have problems being run
# modelfit <- survfit(coxph3)
# 
# #Create dataframe with baseline model information:
#   modeldata <- data.frame(cbind(modelfit$time,modelfit$surv,modelfit$cumhaz,modelfit$upper,modelfit$lower))
#   names(modeldata) <- c("time","surv","cumhaz","upperCI","lowerCI")
# 
# ggplot(data=NULL) +
#   geom_line(data=modeldata,aes(x=time, y=surv),colour="black",linetype="solid",size=1) +
#   geom_line(data=modeldata,aes(x=time, y=upperCI),colour="black",linetype="dashed",size=.5) +
#   geom_line(data=modeldata,aes(x=time, y=lowerCI),colour="black",linetype="dashed",size=.5) +
#   scale_x_continuous(breaks=seq(0,480,120)) +
#   scale_y_continuous(breaks=seq(0,1,.25)) +
#   expand_limits(x=c(0,480),y=c(0,1)) +
#   xlab("Time in Task (seconds)") + ylab("Survival Function") +
# theme_classic() +
# theme(axis.line.x = element_line(color = "black"),
#       axis.line.y = element_line(color = "black"))

Fit Cox Regression Model - Adding the Time-Invariant Predictor

Fit the model, adding negative_affectivity30.c as the predictor, using the survival package:

# Re run model using survival package and a frailty term. (http://r.789695.n4.nabble.com/conditional-gap-time-frailty-cox-model-for-recurrent-events-td4724335.html)

coxph3b <- coxph(Surv(event_time,ang_event) ~ negative_affectivity30.c + frailty(id),
                data = wait36c) 
summary(coxph3b)
## Call:
## coxph(formula = Surv(event_time, ang_event) ~ negative_affectivity30.c + 
##     frailty(id), data = wait36c)
## 
##   n= 921, number of events= 833 
##    (45 observations deleted due to missingness)
## 
##                          coef     se(coef) se2 Chisq DF   p   
## negative_affectivity30.c 0.009804 0.1775         0.0  1.0 0.96
## frailty(id)                                    417.2 90.2 0.00
## 
##                          exp(coef) exp(-coef) lower .95 upper .95
## negative_affectivity30.c      1.01     0.9902    0.7131      1.43
## 
## Iterations: 8 outer, 56 Newton-Raphson
##      Variance of random effect= 0.8047803   I-likelihood = -4896.1 
## Degrees of freedom for terms= -0.1 90.2 
## Concordance= 0.681  (se = 0.012 )
## Likelihood ratio test= 414.7  on 90.14 df,   p=0
# Get AIC
extractAIC(coxph3b)
## [1]   90.14065 9715.39210
# Get log likelihood
coxph3b$loglik
## [1] -4974.912 -4767.555

Now plot the results at high and low negative affectivity. First, get summary statsistics for the variable:

sum.stats <- data.frame(describe(wait36c[,c("negative_affectivity30.c")]))

Create objects to use for representing prototypical children:

NA.minus1 <- as.numeric(sum.stats[1,3] - sum.stats[1,4])
NA.plus1 <- as.numeric(sum.stats[1,3] + sum.stats[1,4])

Isolate data for prototypical cases:

# First need to do a work-around, re-run model without random effects
coxph3b.2 <- coxph(Surv(event_time,ang_event) ~ negative_affectivity30.c,
                data = wait36c) 

survfit(coxph3b.2, newdata=list(negative_affectivity30.c=NA.minus1))->cox1
survfit(coxph3b.2, newdata=list(negative_affectivity30.c=NA.plus1))->cox2

Merge back into one data frame:

coxmodel3b.2.surv <- data.frame(cbind(cox1$time,cox1$surv,cox2$surv))
colnames(coxmodel3b.2.surv) <- c("event_time","NA_minus1SD","NA_plus1SD")

Melt the data for plotting purposes:

coxmodel3b.2.surv.melt <- melt(coxmodel3b.2.surv, id="event_time") 
colnames(coxmodel3b.2.surv.melt) <- c("event_time","predictor","survival")

PLot the survival function at different levels of the predictors. Note that, even with alpha set to .3 (transparency), the lines representing high and low negative affecvitity overlap so much that the plot only appears to show one line.

ggplot(coxmodel3b.2.surv.melt ,aes(x=event_time,y=survival,colour=factor(predictor))) +
  geom_line(size=1, alpha = .3) +
  scale_y_continuous(limits=c(0,1)) +
  xlab("Time in Task (seconds)") + ylab("Survival") +
theme_classic() + 
  theme(axis.line.x = element_line(color = "black"),
        axis.line.y = element_line(color = "black"))

Evaluating Model Fit

Likelihood-ratio Tests

The results of the likelihood ratio test for the model are reported above in the model summary.

Proportional Hazards Assumption

Here we examine proportional hazards for the coxph3b model, with negative affectivity as a time-invariant predictor:

out.zph <- cox.zph(coxph3b,transform="log")
out.zph
##                              rho  chisq     p
## negative_affectivity30.c 0.00319 0.0764 0.782
# Plot the Schoenfeld residuals for a visualization of the proportional hazards
plot(cox.zph(coxph3b))

Step 5: Presentation and Interpretation of Results

Negative affectivity was not significantly associated with the timing of children’s recurring anger expressions. See Lougheed, Benson, Cole, and Ram (in press) for suggestions on reporting these results in a manuscript.