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Preface  
 
 Structural equation modeling is an exciting and very productive approach. In 
the hands of Jöreskog, Sörbom, Bentler, Browne, Arminger, Satorra, Muthen, and 
many others, structural equation modeling has evolved into a mature and 
encompassing technique for scientific data analysis. I have had the privilege of 
teaching introductory and advanced courses in structural equation modeling for more 
than twenty years in many places of the world. This has always been a rewarding 
endeavor: structural equation modeling is eminently suited to accommodate 
theoretical insights about the data generating process. Moreover, it significantly 
furthers understanding of the commonalties between seemingly disparate techniques 
like (M)AN(C)OVA, regression analysis, factor analysis, and hybrid variants thereof. 
Although my own background is in signal analysis, I always have been involved in 
structural equation modeling too. Therefore I gladly accepted a kind offer by Jan de 
Leeuw, editor of this series, to write a monograph on structural equation modeling 
and state-space modeling. This would bring together two of my favorite fields of 
research.  
 In the realm of signal analysis and time series analysis, state-space modeling 
occupies a similar position as structural equation modeling does in multivariate 
statistical analysis. The state-space model can be regarded as a kind of canonical 
model ranging over almost all linear models used in signal analysis and time series 
analysis. Moreover, the formal structure or layout of the state-space model bears a 
close relationship to the general structural equation model. Yet, this close formal 
relationship between state-space modeling and structural equation modeling has 
hardly been noticed in the published literature, let alone been exploited to the benefit 
of one (or both) of them. I do not know the reasons for this mutual neglect, but 
perhaps differences in scientific context, jargon and technical detail may have played 
a role. State-space modeling is a typical engineering approach, usually applied to 
analyze the sequentially dependent behavior of a single system across many time 
points. In contrast, structural equation modeling is a social scientific approach, 
usually applied to the behavior of many systems observed at one or a few time points. 
Issues such as feedback and optimal control play an important role in state-space 
modeling, while they appear to be absent in structural equation modeling. 
Transformation techniques like the Fourier transform or the wavelet transform are 
heavily used in state-space modeling, but hardly figure in structural equation 
modeling. And these are just a few of the differences existing between the two 
approaches. 
 Yet, despite these differences, the commonalties between structural equation 
modeling and state-space modeling are manifold and intriguing. First and foremost, 
the common formal structure of state-space and structural equation models opens up 
the possibility to use linear algebraic results obtained for state-space models in the 
context of structural equation models. The algebraic results concerned constitute the 
field of realization theory and mainly involve the possible different ways in which the 
same behavior of a system can be realized by distinct model structures. As I will show 
in chapter 2 of this book, application of results from realization theory to structural 
equation models leads to quite surprising and, in my view, interesting outcomes. It 
will be shown, among other things, that the latent variables in latent growth curve 
models, common factor models and latent simplex models can be removed from these 
models. Hence these models can be rewritten as equivalent models lacking latent 
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common factors or random weights. To the best of my knowledge this has not been 
accomplished before in the field of structural equation modeling. The possibility to 
remove latent factors and their likes from structural equation models has many 
interesting implications and casts a new light on the status of latent variables.  
 While the formal and statistical differences between structural equation 
modeling and state-space modeling do not appear to be fundamental, the same cannot 
be said of their fields of application. Structural equation modeling is mainly analysis 
of between-subject (between-system) variation, while state-space modeling is mainly 
analysis of within-subject (within-system) variation. An important field of research in 
dynamical systems theory is concerned with the relationship between results obtained 
in analyses of between-system variation and within-system variation. This part of 
dynamical systems theory is called ergodic theory. The classical ergodic theorems 
imply that analysis of between-system variation and within-system variation only 
yield equivalent results if the systems concerned obey strong restrictions. In chapter 3 
I will argue that many populations figuring in social scientific research do not obey 
these restrictions. This lack of ergodicity has many consequences, perhaps the most 
profound one concerns classical test theory. This will be discussed at some length in 
chapter 3.  
 I have written this book with an audience of structural equation modelers in 
mind. Any attempt to apply aspects of mathematical systems theory to structural 
equation modeling requires the introduction of formal concepts and tools that may be 
new to many members of this audience. As to this, one can follow at least two distinct 
approaches: one in which the required formal concepts and tools are presented as 
completely as possible, or one in which this material is dealt with to the minimum 
degree possible. The first approach is in danger of distracting (or stretching) the 
attention of readers so much that the main ideas get lost in a forest of details. The 
second approach is in danger of providing too little detail, leading to incomplete 
understanding of the main ideas. I have chosen to introduce formal tools and concepts 
from mathematical systems theory and time series analysis with a minimum degree of 
elaboration. The reason is, that these concepts and tools mainly are used in an 
algebraic sense to manipulate structural equation models and transform these models 
into equivalent representations. For such formal manipulations it is not required to 
understand the various uses and interpretations of these tools and concepts. In 
addition, I will give ample references to the literature where all this is covered in great 
detail.  
 Most empirical illustrations given in this book are of the following form. a) A 
probability model is specified (always under the simplest possible assumptions of 
Gaussian random variables). b) The true covariance matrix under this model is 
generated. c) Model fits are carried out on this covariance matrix. In this way the 
equivalence of distinct models fitted in step c) can be illustrated. To prove their 
equivalence, algebraic derivations are carried out that sometimes become quite 
tedious. But the bottomline is, that (almost) all models considered in this book are 
linear Gaussian models, whether of the state-space or structural equation variety, 
where the latter can be handled by means of standard structural equation modeling 
software. In this book I use the Lisrel program for that purpose. 
 In rough outline, the contents of this book are as follows. In chapter 1 it is 
proven that the regression estimator for factor scores in a standard (cross-sectional) 
factor model is equivalent to the Kalman filter for the estimation of states in a state-
space model. Even readers who are not particularly interested in this equivalence are 
advised to scan this chapter in order to get accustomed to the style of presentation and 
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notation used in the remainder of this book. Chapter 2 is the largest chapter in the 
book and consists of three parts. In the first part it is proven that latent growth curve 
models and factor models are nested under latent simplex models. Nested means that 
latent growth curve models and factor models can be obtained by fixation of 
parameters in latent simplex models (and not the other way around). In the second 
part it is proven that the random weights in latent growth curve models, the latent 
factors in factor models, and the latent simplex in quasi-simplex models can be 
removed, yielding equivalent models without these latent variables. The tool for 
obtaining this result is a suitably generalized theorem from time series analysis, which 
then is applied to latent simplex models. Because latent growth curve models and 
factor models are nested under the latent simplex model, this generalized theorem also 
applies to these latent growth curve and factor models. Part 2 of chapter 2 is, I think, 
the most difficult part of this book, although I have tried to keep the discussion as 
transparent as possible (some of my students are using this material in their own 
research now). Also, all derivations are illustrated with numerical examples. In part 3 
of chapter 2, it is shown that the removal of latent variables from structural equation 
models is sanctioned by theorems from realization theory.  

Chapter 3 is devoted to the relationship (or lack thereof) between results 
obtained in analyses of between-subject variation (like in standard multivariate 
statistical analysis in the social sciences) and analysis of within-subject variation (I 
use the term variation in its dictionary definition: the degree to which something 
differs, for example, from a former state or value, from others of the same type, or 
from a standard). The importance of classical ergodic theorems for understanding the 
(lack of) relationship between analyses of N=many versus N=1 will be explained in a 
heuristic way. The often-surprising effects of heterogeneity in a population of subjects 
will be discussed, in particular regarding the foundations of classical test theory. 
Finally, in chapter 4 some unfinished business is taken care of (equivalence between 
regression estimator of longitudinal factor scores and Kalman smoother; state-space 
models versus state-space representations) and some conclusions and implications for 
further research are mentioned. 
 The central chapters of this book are chapters 2 and 3. It should be possible to 
read each chapter independently of each other (after getting acquainted with the style 
of presentation and notation). As I mentioned before, parts of chapter 2 and 3 are used 
by my students in their research. But in general this is not a standard textbook. It is 
more a display of (relatively) new ideas with possibly profound consequences for the 
field of structural equation modeling. These ideas should be considered as tentative 
conjectures; their definite treatment has to await (a lot of) further elaboration and 
research. 
 It is my pleasure to thank several persons for being instrumental in writing this 
book. My friends in the Methodology SuperCenter: John Nesselroade, Mike Rovine 
and Alex von Eye. My friends and colleagues in the Psychological Department at the 
University of Amsterdam, in particular Don Mellenbergh, Conor Dolan, Denny 
Borsboom, Han van der Maas and Ineke van Osch. A special thanks is due to the 
board of my department, for providing the excellent facilities to carry out an endeavor 
like this. Last, but in reality first, I thank my wife Madeleine and my two daughters, 
Charlotte and Françoise, for their love and comfort. 
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1. An introduction to the relationships between 
state-space modeling and structural equation 
modeling 
 
 In this chapter a first encounter is presented with the relationship between 
state-space models and structural equation models. This will provide the opportunity 
to introduce these types of models in a leisurely fashion. To wit, many details will 
have to be neglected in this way of presentation, but these will be introduced at 
appropriate places later on.  
 It is noted that some aspects of this relationship have been addressed in the 
published literature. MacCallum & Ashby (1986) discuss the relationships between 
linear systems theory and covariance structure modeling. Perhaps the first paper is 
due to Priestley & Subba Rao (1975), who rewrite the regression estimator (predictor) 
of factor scores in a standard factor model as a special instance of the Kalman filter 
(to be defined shortly) associated with a linear state-space model. In what follows I 
will present the result originally obtained by Priestley & Subba Rao, using a different 
derivation which, I think, is a bit more straightforward. Bold-face lower-case letters 
denote column vectors, while bold-face upper-case letters denote matrices. 
Transposition is denoted by the superscript '. Expectation is denoted by E[.] and 
covariance by cov(., .).  
 

1.1 Ensembles 
 

To facilitate comparison between state-space models and structural equation 
models, the concept of ensemble is introduced. For most readers this concept may not 
be familiar, so I will start with giving some additional background information.  

The concept of ensemble arose in statistical mechanics, in particular in the 
innovative work of Gibbs (cf. Dorfman, 1999, chapter 5). It resembles the concept of 
the 3-way data box introduced in the psychometrical literature by Cattell (1946). The 
conceptual dimensions of Cattell's data box refer to, respectively, variables, persons, 
and times. In a similar vein an ensemble is a collection of time-dependent trajectories 
describing the dynamic behavior of a set of systems. The elements of this set are 
mutually interchangeable, i.e., identical in all relevant aspects.  

Although the 3-way data box bears a resemblance to an ensemble, there are 
also important differences. An ensemble allows for interpretations that do not apply to 
the data box. For instance, an ensemble can be interpreted as the collection of all 
possible realizations of a stochastic function characterizing the behavior of a single 
system. This shows that an ensemble allows for a kind of intensional interpretations, 
whereas the data box always has extensional meaning (namely the 3-way lay-out of 
actual data). Also, an ensemble is intrinsically stochastic, whereas the typical 3-way 
data box is considered to be fixed (but see Bentler & Lee, 1979). Finally, the concept 
of ensemble is standard in the mathematical-statistical theory which will be used later 
in this book and therefore it is helpful to use it consistently.  
 Consider a single system S, the time-dependent behavior of which is 
represented by the p-variate vector-valued function y

S
(t), t=0,±1,±2,..., where the 

dimension p is finite (1≤ p <∞). We can picture y
S
(t) as a trajectory in (p+1)-
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dimensional space (where t is the extra dimension). Following Brillinger (1975, 
section 2.11) we also can conceive of y

S
(t) as a particular realization of a random 

function y
S
(ω,t), ω∈Ω, where Ω is an arbitrary space or set of "outcomes". After 

defining a probability measure on Ω, we obtain an ensemble of possible trajectories of 
which the actual realization y

S
(t) constitutes a sample. It will explained shortly that 

this ensemble of possible trajectories is the basic domain for state-space modeling as 
well as structural equation modeling.  
 We can regard the ensemble of possible trajectories as a covering of a (p+1)-
dimensional space, the density of which is obtained from the probability measure 
defined on Ω. From another point of view, this ensemble can be regarded as the 
collection of trajectories of copies of system S which are interchangeable with S in all 
relevant aspects. These two alternative points of view (cf. Caines, 1988, for a clear 
pictorial presentation) bear a resemblance to the distinction between the stochastic 
subject formulation and the random sampling formulation of latent variable models 
(e.g., Ellis & Junker, 1997). It then makes sense to denote the ensemble of trajectories 
by {y

i
(t), t=0,±1,...; i=1,2,…}, under the obvious condition that different systems i do 

not interact (because they have to generate possible trajectories under the alternative 
stochastic subject point of view). 
 

1.2 Standard factor models 
 
 For the moment the ensemble {y

i
(t), t=0,±1,...; i=1,2,…} is regarded as the 

common domain of both state-space modeling and structural equation modeling. The 
structural model which will be considered is the standard factor model at a fixed time 
t1: 
 
(1.1)  y

i
(t1) = Λt1ηi(t1) + ε

i
(t1), or y

i
 = Λη

i
 + ε

i
, i=1,2,…  

 
where in the second expression the redundant fixed time index has been omitted. It is 
understood that the expectation of y

i
 with respect to the probability measure over 

systems (subjects) i at time t1 is zero: E[y
i
] = 0. η

i
 denotes a q-variate common factor 

and ε
i
 p-variate measurement error. Λ is the (p,q)-dimensional matrix of factor 

loadings. To complete the description of the standard factor model, simple 
distributional assumptions are introduced for η

i
 and ε

i
: ηi ∼ℵ(0, Φ) and ε

i
 ∼ℵ(0, Θ), 

where ℵ(μ, Σ) denotes the Gaussian distribution with mean μ and variance Σ. It is 
assumed that Θ is diagonal (mutually uncorrelated measurement errors). It follows 
from these distributional assumptions and the assumption that cov[η

i
, ε

i
] = 0 that y

i
 

∼ℵ(0, Σy), where Σy = ΛΦΛ' + Θ. 
 

1.3  Linear state-space models 
 
 The state-space model which will be considered is the linear state-space model 
for a fixed system i1: 
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(1.2) yi1(t) = Λi1η i1(t) + ε i1(t), or y(t) = Λη(t) + ε(t), t=0,±1,…   
 
where in the second expression the redundant system index i1 has been omitted. For 
the moment it is understood that the expectation of y(t) with respect to the probability 
measure over times t for system i1 is zero: E[y(t)] = 0. η(t) denotes a q-variate latent 
factor series, ε(t) a p-variate measurement error series, which will be defined shortly.  
Λ is a (p,q)-dimensional matrix of factor loadings. In contrast to the standard factor 
model (1.1) where the index i refers to an unordered set of systems (i.e., the standard 
factor model is invariant under permutations of the set of systems), the time index t in 
(1.2) refers to an ordered set of realizations (i.e., permutation of this set is not 
allowed). The ordering of t allows for the representation of sequential dependencies, 
i.e., the introduction of (stochastic) difference equations expressing local dynamic 
relationships. Presently, only the simplest possible dynamic relationship will be 
considered, namely a stochastic difference equation relating η(t) to η(t-1): 
 
(1.3)  η(t) = Βη(t-1) + ζ(t), t=0,±1,… 
 
where Β is a (q,q)-dimensional matrix of regression coefficients and ζ(t) is called a q-
variate innovations process which lacks any sequential dependency.  
 In the definition of (1.2), η(t) and ε(t) are referred to as (time) series, while 
ζ(t) in (1.3) is called a (random or stochastic) process. Also y(ω,t) = y(t) is called a 
stochastic or random function. I will use the terms (time series, stochastic process, 
random function) interchangeably. It is acknowledged that these terms may have 
slightly different connotations in more technical contexts, but within the context of 
this book such differences are not important. The terms refer to a time-dependent 
probabilistic structure which can be summarized as follows.   
 A multivariate stochastic process x(t) in discrete time t is characterized by a 
set (a so-called cylinder set; cf. Billingsley, 1995) of finite-dimensional distributions 
P(x;t) =Prob[x(t)<x], P(x1,x2;t1,t2) = Prob[x(t1)<x1;x(t2)<x2], etc. Accordingly, we can 
consider the first-order moment function (of time) of x(t), the second-order moment 
function of x(t), etc. In general these moment functions can be time-varying, i.e., they 
can depend upon the time t (first-order moment function), the pair of times t1, t2 
(second-order moment function), etc. If, however, the first-order moment function is a 
constant, E[x(t)]=cx, then x(t) is called first-order stationary. If its second-order 
central moment function only depends upon the lag between t1 and t2, E[(x(t1)-
cx(t1)),(x(t2)-cx(t2))'] = cov[x(t1),x(t2)'] = Cx(u), u = t2-t1, then x(t) is called second-
order stationary. If x(t) is both first- and second-order stationary then it is called 
weakly stationary. 
 The definition of the probability structure of weakly stationary time series is 
rather limited in that only the first-order and second-order moment functions are 
involved and because these are considered to be invariant under time shifts. Yet for 
the present purposes the assumption of weak stationarity suffices (in later sections 
much more general probability structures will be considered). It allows for the 
specification of the distributional assumptions associated with (1.2) and (1.3). Starting 
with the latter, it is sufficient to specify the probability structure of ζ(t): ζ(t) ∼ℵ(0, Ψ) 
and cov[ζ(t), ζ(t+u)] = Cζ(u) = δ(u)Ψ, u=0,±1,…, where the Kronecker delta δ(u) 
equals 1 if u=0 and equals zero otherwise. The covariance function Cζ(u) of ζ(t) is 
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only nonzero if the lag u is zero: Cζ(0) = Ψ. Hence ζ(t) lacks any sequential 
dependency and can be regarded as a series of independent draws from ℵ(0, Ψ). I 
will refer to this kind of weakly stationary series lacking sequential dependency as 
white noise. Hence ζ(t) is called Gaussian q-variate white noise. The denotation white 
noise arose in the engineering sciences in view of the fact that the spectrum (the 
Fourier transform of the covariance function) of such a series is constant across all 
frequencies, like the spectrum of white light.  
 Using (1.3) the probability structure of η(t) can be derived from the 
distributional assumptions about ζ(t) and the additional assumption that cov[ζ(t), 
η(t')] = 0 for t  ≥ t'. Hence there is no need to introduce distributional assumptions 
about η(t). To give a simple illustration: suppose q = 1. Then (1.3) reduces to: η(t) = 
βη(t-1) + ζ(t), where |β| < 1 to guarantee weak stationarity. Then cov[η(t), η(t)] = 
cη(0) = E[η(t)2] = E[{βη(t-1) + ζ(t)}2]. Expanding the final expression, using that 

cov[η(t-1), ζ(t)] = 0, one obtains: E[{βη(t-1) + ζ(t)}2] = β2cη(0) + ψ. This expression 

equals E[η(t)2] = cη(0). Rearranging yields: cη(0) = ψ / (1 - β2). For positive lags u 
unequal to zero, u > 0, one obtains using (1.3) again: cov[η(t), η(t+u)] = cη(u) = 
E[η(t), βη(t+u-1) + ζ(t+u)]. Expanding the final expression and using cov[η(t), 
ζ(t+u)] = 0 and cov[η(t+u-1), ζ(t+u)] = 0, one gets: cη(u) = βcη(u-1). This recursive 

equation, with cη(0) = ψ / (1 - β2) as initial condition, yields the covariance function 
of η(t) for all lags u  ≥ 0. An easy argument shows that the covariance function of any 
univariate weakly stationary time series, and hence cη(u) too, is symmetrical about lag 
zero. 
 The final distributional assumption concerns the measurement error ε(t) in 
(1.2): ε(t) ∼ℵ(0, Θ) and cov[ε(t), ε(t+u)] = Cε(u) = δ(u)Θ, u=0,±1,… Hence ε(t) is p-
variate Gaussian white noise. It is assumed that Θ is diagonal. It then follows, using 
the additional assumption that cov[ε(t), ζ(t')] = 0 for all t and t', that y(t) is a p-variate 
Gaussian time series with mean zero and covariance function: cov[y(t), y(t+u)] = 
Cy(u) = ΛCη(u)Λ' + δ(u)Θ, u=0,±1,… 
 

1.4 Estimation of latent states and factors 
 
 First a matter of notation. Let x(t), t=0,±1,... be a time series, i.e., a probability 
structure as defined in the previous section. A sample from this time series constitutes 
a stretch of values x(1)=x1, x(2)=x2, ..., x(T)=xT. Such a sample will be denoted by: 
{x(t), t=1,...,T}. Of course this latter notational convention is not correct (a finite part 
of one trajectory or realization of x(t) is denoted by x(t) itself), but is common 
practice in the time series literature and can be used without causing ambiguity. 

Priestley & Subba Rao (1975) present a derivation of the Kalman filter, 
associated with the linear state-space model, from the regression estimator of factor 
scores associated with the standard factor model. The Kalman filter is an estimator of 
the state process η(t) given a set of observations {y(k), k=1,…,t} and given the model 
equations (1.2) and (1.3). That is, it is assumed that Λ, Θ, Β, and Ψ are known. Then 
the Kalman filter constitutes a recursive estimator of {η(t), t=1,…,T}.  
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 A recursive estimator makes use of the ordering of the time axis and can be 
schematically represented as: estimate at time t = F[estimate at time t-1 and the 
observation at time t], where F[.] denotes some appropriate function. Take for 
instance the simple example of the estimator of the mean of {y(t), t=1,…,T}. The 
standard estimator is: my = T-1Σt=1,Ty(t). Following Koopmans (1995) I will call this 
kind of estimator a batch estimator: it is an estimator using at once the complete batch 
of observations {y(t), t=1,…,T}. Denote the equivalent recursive estimator at time t 
by: my(t | t). This notation expresses that the recursive estimator at time t is 
conditional on the information obtained up to and including time t:  
 
(1.4)  my(t | t) =: my(t | y(1), y(2), ..., y(t)), 
  
where =: denotes an equality by convention. It is an easy exercise to determine that 
my(t | t) = (t-1)/t my(t-1 | t-1) + y(t)/t, t=1,2,...,T; my(0 | 0) = 0.  
 Using the notation of (1.4), the Kalman filter for the state-space model (1.2)-
(1.3) is given by: 
 
  η(t | t) = Bη(t-1 | t-1) + K(t)[y(t) - ΛBη(t-1 | t-1)] 
 
  K(t) = V(t | t-1)Λ'[ΛV(t | t-1)Λ' + Θ]-1  
 
(1.5)  V(t+1 | t) = BV(t | t)B' + Ψ 
 
  V(t | t) = [Iq - K(t)Λ]V(t | t-1) 
 
  η(0 | 0) = μ0, V(0 | 0) = V0
 
where Iq denotes the (q,q)-dimensional unity matrix. The set of recursive equations 
(1.5) yields the estimated trajectory η(t | t), t=1,...,T of the state process η(t ) in (1.2)-
(1.3) associated with the observations {y(t), t=1,...,T}. It works rather simple. At time 
t=1, first V(1 | 0) is computed according to the third equation in (1.5): V(1 | 0) = 
BV0B' + Ψ. Next K(1) is computed according to the second equation in (1.5), after 
which η(1 | 1) can be determined according to the first equation in (1.5) using η(0 | 0) 
= μ0 and the observed value of y(1). Finally, V(1 | 1) is determined according to the 
fourth equation in (1.5). The values thus obtained at t=1 for η(1 | 1) and V(1 | 1) 
constitute the starting values for the computations at t=2, etc. 
 The estimate η(t | t) is composed of two parts: Bη(t-1 | t-1), which is the 
predicted value based on the information available at time t-1, and K(t)[y(t) - ΛBη(t-1 
| t-1)], which is the correction based on the new information y(t) entering at time t. In 
the latter correction component the term ΛBη(t-1 | t-1) is the predicted value y(t | t-1) 
of y(t) based on the information available at time t-1. The (q,p)-dimensional weight 
matrix K(t) in the correction component is the famous Kalman gain.  
 The (q,q)-dimensional matrix V(t | t) is E[(η(t | t) - η(t)), (η(t | t) - η(t))' | Yt], 
the covariance matrix of η(t | t) conditional on Yt, the information available up to 
time t. The (q,q)-dimensional matrix V(t | t-1) is E[(η(t | t-1) - η(t)), (η(t | t-1) - η(t))' | 
Yt-1], the covariance of η(t | t-1) conditional on Yt-1, the information available up to 
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time t-1. The reader is referred to Caines (1988, p. 161) for the delicate difference 
between conditional and unconditional covariance matrices (see also Anderson & 
Moore, 1979). In view of the Gaussian distribution assumptions with respect to (1.2)-
(1.3) we can for the time being neglect this difference. The initial conditions η(0 | 0) 
= μ0 and V(0 | 0) = V0 are assumed to be given (but see the final section of this 
chapter). 
 Before closing this initial encounter with the Kalman filter, it has to be 
determined what kind of estimator it is. Note that any type of estimator, whether 
derived according to (generalized) least-squares techniques, maximum likelihood 
techniques or the Bayesian approach, can be (and has been) casted in recursive form. 
From this point of view the recursive form merely is a computational aspect. Hence 
the recursive form of the Kalman filter does not provide a clue to what kind of 
criterion or discrepancy function is optimized by it. Jazwinsky (1970, p. 201, 
Theorem 7.2) shows that the Kalman filter associated with our state-space system 
(1.2)-(1,3) constitutes the minimum variance filter for the state process η(t). He also 
presents the derivation of the Kalman filter according to the maximum likelihood 
technique (op. cit., pp. 207-208). Sage & Melsa (1971, pp. 272-283) derive the 
Kalman filter according to the Bayesian approach. Caines (1988, p. 158, Theorem 
4.1) shows that the Kalman filter associated with our state-space system, requiring 
only that ζ(t) and ε(t) are weakly stationary white noise series (hence dropping the 
assumptions of Gaussianity) constitutes the linear least squares filter for the state 
process η(t).  
 We now turn to the estimation of the realizations of η

i
 in the standard factor 

model (1.1) given a set of observations {y
i
 , i=1,...,N} and given Λ, Φ and Θ. It is 

sometimes argued that calling this "estimation" of factor scores involves incorrect 
terminology and that "prediction" of factor scores should be used instead (e.g., 
Bartholomev, 1987). I take no position on this issue, but will use factor score 
"estimation" only because it appears to be the more common denotation. The 
regression estimator for η

i is given by (e.g., Lawley & Maxwell, 1971, p. 109): 
 
  η(i | y

i
) = ΦΛ'Σ-1y

i
 , i=1,...,N 

(1.6) 
  E[(η(i | y

i
) - η

i
), (η(i | y

i
) - η

i
)'] = Φ(Iq + Λ'Θ-1ΛΦ)-1 

 
 Apart from the regression estimator there are several other kinds of factor 
score estimators. These will not be considered here, as Priestley & Subba Rao (1975) 
only discuss the relationship between (1.6) and (1.5). 
 

1.5  The regression estimator as Kalman filter 
 
 I will now show that the regression estimator for factor scores constitutes a 
special case of the Kalman filter. Specifically, it will be proven that (1.6) is a special 
case of (1.5). But first I will outline the proof of Priestley & Subba Rao (1975). 
 In fact, Priestley & Subba Rao present a proof in the reverse direction, namely 
that the Kalman filter can be rewritten as the regression estimator. Their proof 

 10



consists of three steps. In the first step the state-space model is rewritten as a standard 
factor model (1.1). This is accomplished by means of the following transformations: 
 
 y*(t) = y(t) - E[y(t) | Yt-1], η*(t) = η(t) - E[η(t) | Yt-1] 
 
where Yt-1 denotes the set of variables {y(t-1), y(t-2), ...}. Given (1.2)-(1.3) it follows 
that y*(t) and η*(t) are Gaussian white noise processes lacking any sequential 
dependencies and that substitution of y*(t) and η*(t) in (1.2)-(1.3) transforms the 
state-space model into a standard factor model. Hence for this transformed state-space 
model the regression estimator is a valid estimator of η*(t). In their second step 
Priestley & Subba Rao apply the inverse of their original transformation (yielding y(t) 
and η(t) again) to the regression estimator, which then is shown to become identical 
to the Kalman filter.  
 In what follows I will show that the standard factor model constitutes a special 
instance of the state-space model, apply the Kalman filter to the standard factor 
model, and then show that it reduces to the regression estimator. This approach 
precludes the need to introduce the transformations and their inverses which is 
necessary in the approach taken by Priestley & Subba Rao (1975). I will also extend 
the proof of Priestley & Subba Rao and show the equivalence of the covariance 
matrices of the Kalman filter estimate and the regression estimate. The latter 
equivalence is not discussed in Priestley & Subba Rao's paper. 
 To understand that the standard factor model (1.1) is a special instance of the 
state-space model (1.2)-(1.3), it may be helpful to remember the definition of 
ensemble given in section 1.1. An ensemble is defined as a set of trajectories {y

i
(t), 

t=0,±1,...; i=1,2,…}, where tractories of different systems i and i', i ≠ i', are mutually 
independent (do not influence each other). The standard factor model is defined with 
respect to this ensemble by taking a fixed time point t1 and then describe the variation 
between different realizations (values of different trajectories) i=1,2,... . This can be 
interpreted as defining the same state-space model for each realization y

i
(t1), i=1,2,..., 

where each trajectory is observed at the same single fixed time point t1. It then is 
obvious that (1.3) reduces to: η

i
(t1) = ζ

i
(t1), i=1,2,…, because observations only are 

available at a single time point t1 and therefore it makes no sense to consider 
relationships between consecutive time points. Consequently, Β is fixed at  Β = 0 in 
(1.3).  
 It follows from this reasoning (which is also implicitly used in Priestley & 
Subba Rao's (1975) paper) that application of the Kalman filter to the standard factor 
model cum state-space model reduces to a single recursion step for each i=1,2,..., 
given the model parameters and initial values. To ease the presentation it is assumed 
that t1 = 1. Obviously, this is an inconsequential notational convention. The initial 
values are: η(0 | 0) = 0 (because E[η

i
] = 0) and V(0 | 0) = Φ (because cov[η

i
, η

i
] = Φ). 

Together with the restriction that Β = 0, it follows that (1.5) can be rewritten for each 
i=1,2,... as: 
 
  η

i
(1 | 1) = K(1)y

i
(1)  

 
  K(1) = ΦΛ'[ΛΦΛ' + Θ]-1  
(1.7) 
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  V(1 | 0) = Φ 
 
  V(1 | 1) = [Iq - K(1)Λ]Φ 
 
It is immediately clear from the second equation in (1.7) that the Kalman gain K(1) 
equals the regression estimator (1.6): K(1) = ΦΛ'[ΛΦΛ' + Θ]-1 = ΦΛ'Σ-1. Hence η

i
(1 

| 1) = η(i | y
i
).  

 This derivation has been accomplished in a rather effortless way, 
circumventing the transformations needed in the derivation given by Priestley & 
Subba Rao (1975). Moreover, it allows for the simple execution of an additional step, 
not considered by Priestley & Subba Rao, namely a proof of the equivalence of V(1| 
1) in (1.7) and E[(η(i | y

i
) - η

i
), (η(i | y

i
) - η

i
)'] in (1.6). Again this proof is obtained 

quite effortless. First, using K(1) = ΦΛ'Σ-1, V(1 | 1) in (1.7) is rewritten as: V(1 | 1) = 
Φ - ΦΛ'Σ-1ΛΦ. Second, Lawley & Maxwell (1971, p.109) show that E[η(i | y

i
), η(i | 

y
i
)] = ΦΛ'Σ-1ΛΦ = Φ - Φ(Iq + Λ'Θ-1ΛΦ)-1.Hence, E[(η(i | y

i
) - η

i
), (η(i | y

i
) - η

i
)'] = 

Φ(Iq + Λ'Θ-1ΛΦ)-1 = Φ - E[η(i | y
i
), η(i | y

i
)]. Substitution of the equality E[η(i | y

i
), 

η(i | y
i
)] = ΦΛ'Σ-1ΛΦ in the latter expression yields: E[(η(i | y

i
) - η

i
), (η(i | y

i
) - η

i
)'] = 

Φ - ΦΛ'Σ-1ΛΦ. Hence V(1 | 1) = E[(η(i | y
i
) - η

i
), (η(i | y

i
) - η

i
)']. QED. 

 

1.6  Discussion 
 
 The result obtained in this chapter, namely a proof that the regression 
estimator (1.6) of factor scores in the standard factor model (1.1) constitutes a special 
case of the Kalman filter (1.5) associated with the state-space model (1.2)-(1.3), 
should be qualified in a number of ways. Firstly, it is only a variation of the 
innovative work of Priestley & Subba Rao (1975). Using a remark made in Jazwinsky 
(1970, p. 209): "It is easy to rederive a known result". Secondly, both the standard 
factor model and the state-space model considered in this chapter have rather special 
properties, such as Gaussian distributional assumptions and known model parameters. 
In chapter 4 I will consider the same kind of relationship under more general 
formulations of the models, in particular allowing for uncertain (i.e., estimated) model 
parameters. Thirdly, it would be interesting to consider other kinds of factor models, 
in particular longitudinal factor models. In chapter 4 it will also be shown that this 
leads to a more intricate kind of relationship between the regression estimator for 
longitudinal factor scores and a variant of the Kalman filter.  
 Apart from the opportunity to consider a particular kind of relationship 
between structural equation models and state-space models, this chapter also served 
as a (hopefully) smooth introduction of notational conventions and technicalities 
which will be used in the remainder of this book. For this reason I did not provide any 
numerical illustrations in this chapter. The concepts of an ensemble, the linear 
Gaussian state-space model and the Kalman filter will recur at several places in what 
follows. We should now be prepared enough to successfully tackle our first main 
problem in the next chapter. 
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2.  A stepwise proof that factor models and latent 
growth curve models are nested under quasi-simplex 
models, followed by a general scheme to rewrite 
latent variable models as equivalent models with only 
observed variables 
 
 During a large part of the last decade of the previous century I had a part-time 
assignment at the Pennsylvania State University. I was, and still am, very grateful for 
getting the opportunity to learn about, and participate in, academic life typical of a 
renown university in the US. One recurring aspect of that life, which still is relatively 
uncommon at Dutch universities, involved the proceedings of selecting a candidate 
for a vacant position. For each position, several candidates were invited to spend a 
few days at the department concerned and present a lecture. Because my assignment 
was at a methodology department, I witnessed many lectures of candidates for one or 
the other vacant position related to methodology. I became increasingly surprised by 
the number of lectures devoted to hierarchical linear modeling, in particular latent 
growth curve modeling of longitudinal data (this model will be specified below). For 
some positions almost all candidates presented a lecture using some innovative 
variant of the latent growth curve model or a particularly interesting application of the 
latent growth curve model. Yet the descriptions of the vacant positions concerned did 
not restrict the expertise of candidates in this severe way. What, then, could explain 
the popularity of this particular type of model? 
 In the beginning of the nineties I could not find an answer to this question. To 
make my question somewhat more explicit, I explained in my courses on structural 
equation modeling that the latent growth curve model constitutes a special instance of 
a confirmatory structural equation model. I also indicated that general hierarchical 
modeling constitutes a special instance of the confirmatory multi-group structural 
equation model (cf. Lee & Poon, 1993, for a more recent overview). By showing that 
these popular models are special instances of a general model which includes 
numerous alternative variants as special cases, I hoped to convey more clearly my 
questions about the seemingly arbitrary focus on one particular kind of variant. In 
retrospect, these efforts constituted the starting point of the contents of the present 
chapter.  
 I still do not have a satisfactory explanation for the apparent popularity of 
hierarchical linear models and latent growth curve models. But this is immaterial for 
the contents of this chapter, because it will not play any further role. In this rather 
long chapter I will first prove that the standard factor model and the latent growth 
curve model both are special instances of the quasi-simplex model. This part builds 
on a recent paper by Rovine & Molenaar (2001). To some readers it may come as a 
surprise that the standard factor model and the latent growth curve model are nested 
under the quasi-simplex model, because until now it appears to have been commonly 
accepted that at least the latent growth curve model and the quasi-simplex model 
constitute rather different alternative models for longitudinal data (cf. Rogosa & 
Willett, 1985). Yet the proof is surprisingly simple and only requires a suitable 
generalization of a technical theorem in time series analysis. The rest of the proof is 
straightforward matrix algebra. I will also give several illustrations using simulated 
data, and occasionally present an application to empirical data. Moreover, I will pay 
due attention to somewhat older work in psychometrics in which serious doubts have 

 13



been raised about the appropriateness of the standard factor model for the analysis of 
longitudinal data. For some unjustified reason, this work seems to have been 
forgotten. 
 In the next major part of this chapter I will use the same technical theorem in 
time series analysis to rewrite a large class of latent variable models as models 
involving only manifest variables. To the best of my knowledge, this result is new in 
the methodology of behavioral and social sciences (excluding perhaps econometrics). 
Again the proof is rather straightforward. I will not strive to maximum generality, but 
mainly show the way in which proofs of this kind can be given. Again illustrations 
using simulated data will be given. Also some implications of this result will be 
discussed, in particular regarding ongoing discussions about the reality, identifiability 
and estimability  of latent variables.  
 In the final major part of this chapter it will be shown that the results obtained 
in the previous parts may be considered to be new in the behavioral and social 
sciences, but can be derived from general theorems in mathematical systems theory 
and hence are common knowledge in the engineering sciences. This part is 
necessarily more technical, but I will try to convey the gist of the argumentation as 
clearly as possible. A preliminary remark about terminology. The quasi-simplex 
model to be introduced soon will also be referred to as the univariate latent simplex. 
The latter denotation does not appear to be common in the literature, but it easily 
generalizes to higher dimensions, like the latent bivariate simplex, etc.  
 

2.1 The standard factor and latent growth curve models as 
special instances of the quasi-simplex model 
 
 Our starting point is the definition of the quasi-simplex model. Then it is 
shown that the standard 1-factor model constitutes a special instance of the quasi-
simplex model. This result is generalized to the standard multi-factor model. Next it is 
made explicit that the latent growth curve model is itself a special instance of the 
confirmatory q-factor model (where q usually, but not always, is taken to be q=2). 
Because of the nesting of factor models under the quasi-simplex model, it follows that 
also the latent growth curve model, regarded as a special instance of the factor model, 
is nested under the quasi-simplex model.  
 

2.1.1 The quasi-simplex model 
 
 The simplex model has a rather long history in psychometrics, which I will 
neglect here in order to keep the discussion focussed. It was Jöreskog (1970) who put 
the quasi-simplex as we currently know it on the map. The reader is referred to 
Jöreskog & Sörbom (1989) for a detailed description of this model. In this section the 
quasi-simplex in its simplest form is defined, after which a few elaborations are given 
which will be used in later sections.  
 Consider an ensemble of univariate trajectories {y

i
(t), t=0,±1,...; i=1,2,…} and 

choose a set of T fixed time points t1 < t2 < ... < tT. To avoid clumsy notation these 
fixed times will be denoted by t=1,2,...,T. It should be kept in mind, however, that in 
this section time points are treated as fixed indices (time is not considered to be a 
domain of generalization), whereas this is not the case when dealing with time series. 
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Consequently, although the present notation resembles the notation used for time 
series and the state-space model, I hope that the benefits of easy notation will 
outweigh the possibility of ambiguity. The standard quasi-simplex model defined for 
{y

i
(t), t=1,...,T; i=1,2,…}, assuming that E[y

i
(t)] = 0 for t=1,...,T, is defined by 

 
  y

i
(t) = η

i
(t) + ε

i
(t), t=1,...,T 

(2.1) 
  η

i
(t) = βt,t-1ηi

(t-1) + ς
i
(t), t=2,...,T 

 
 The first equation in (2.1) describes at each time point t a decomposition of the 
observed variable y

i
(t) into measurement error ε

i
(t) and an error-free component η

i
(t). 

The second equation in (2.1) describes the regression of η
i
(t) on η

i
(t-1). Notice that no 

regression of η
i
(1) on η

i
(0) is possible, because y

i
(0) is not available. This can be 

expressed by the "empty" equation: η
i
(1) = ς

i
(1). Another way to express the 

unavailability of y
i
(0), and hence of η

i
(0), is to regard the second equation in (2.1) as 

a stochastic difference equation, the solution of which requires the independent 
specification of initial conditions (following up on the latter interpretation, one could 
conceive of the solution of this equation in terms of stochastic Green's functions; e.g., 
Keilson, 1965). A heuristic interpretation, which for instance has been given within 
the context of longitudinal behavior genetics in which η

i
(t) refers to additive genetical 

influences (Boomsma & Molenaar, 1987), is to regard βt,t-1ηi
(t-1) as the effects of 

those genes which are "turned on" on both time t-1 and time t. Following this 
heuristic interpretation, ς

i
(t) then can be regarded as the effects of genes which are 

"turned on" for the first time at time t. This explains the technical term for ς
i
(t): the 

innovation at time t. Hence the complete second equation in (2.1) expresses η
i
(t) as 

composed of a locally stable part βt,t-1ηi
(t-1) and an innovative part ς

i
(t).  

 Before proceeding I have to voice again a word of caution. The form of (2.1) 
closely resembles the form of the state-space model (1.2)-(1.3). If p = q = 1 and Λ is 
taken to be the identity, then this results in a representation that is akin to (2.1). Yet in 
(2.1) the time points are fixed and the model describes the variation between systems 
(subjects) i=1,2,… . In contrast, in (1.2)-(1.3) systems (subjects) are fixed and the 
model describes the variation within each system over time (within-subjects 
variation). As will become evident in the next chapter, these differences can have far-
reaching consequences and hence these distinct implications of the two 
representations should be kept in mind, despite their formal resemblance. 
 Introducing the vectors y

i
 = [y

i
(1),...,y

i
(T)]', ε

i
 = [ε

i
(1),...,ε

i
(T)]', η

i
 = 

[η
i
(1),...,η

i
(T)]' and ς

i
 = [ς

i
(1),...,ς

i
(T)]', the model (2.1) can be rewritten in its usual 

form: 
 
   y

i
 = η

i + ε
i

 
  η

i = Βη
i + ς

i
,  

(2.2) 
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 B =

0 0   ... 0 0
β2,1 0   ... 0 0

. . .

. . .
0 0 βT, T−1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 The distributional assumptions for (2.2) resemble those for the standard factor 
model (1.1): ς

i
 ∼ℵ(0, Ψ), ε

i
 ∼ℵ(0, Θ), where Ψ and Θ are taken to be diagonal 

(uncorrelated innovations and measurement errors) and cov[η
i
, ε

i
] = cov[η

i
, ς

i
] = 

cov[ε
i
, ς

i
] = 0. It then follows from (2.2) that cov[y

i
, y

i
] = Σy = Φ + Θ =  

(IT - Β)-1Ψ(IT - Β')-1 + Θ, IT being the (T,T)-dimensional identity matrix.  
 

2.1.2  The standard 1-factor model as quasi-simplex model 
 
 To show that the standard factor model (1.1) is nested under the quasi-simplex 
model (2.2), it has to be specified which parameters in (2.2) have to be restricted in 
order to obtain (1.1). To ease the discussion, attention will first be restricted to the 
standard 1-factor model.  
 A salient difference between the 1-factor model and the quasi-simplex model 
concerns the number of latent η-variables. For T longitudinal measurement occasions 
the 1-factor model has one latent η-variable, whereas the quasi-simplex model has T 
η-variables, one for each measurement occasion. Hence it is obvious that the quasi-
simplex model only can yield a 1-factor model if its T η-variables are reduced to 
single η-variable. This is accomplished by restricting all innovation variances along 
the diagonal of Ψ to zero, expect at time t = 1. Because ς

i
 ∼ℵ(0, Ψ) in (2.2), these 

restrictions imply that the second equation in (2.1) reduces to: η
i
(t) = βt,t-1ηi

(t-1), 
t=2,...,T. Moreover, Φ =  
(IT - Β)-1Ψ(IT - Β')-1 in (2,2) is a (T,T)-dimensional covariance matrix of rank 1, 
which implies that the initial T η-variables in (2,2) reduce to a single η-variable. 
 To illustrate, consider a quasi-simplex model where T = 4. Let Ψ = diag[ϕ

11
, 

0, 0, 0], where diag[.] specifies the diagonal of a covariance matrix in which all off-
diagonal elements are zero. Then Φ is the (4,4)-dimensional covariance matrix, of 
which the (i,j)-th element φij, i=1,...,4, j=i,...,4, is given by: 
 
 φ11 = ϕ

11
 
 φ21 = β21ϕ11  φ22 = (β21)2 ϕ

11
  
 φ31 = β32β21ϕ11  φ32 = β32(β21)2ϕ

11
   φ33 = (β32β21)2ϕ

11
 
    φ41 = β43β32β21ϕ11  φ42 = β43β32(β21)2ϕ

11
   φ43 = β43(β32β21)2ϕ

11
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 φ44 = (β43β32β21)2ϕ
11

 
 
 Φ has 3 zero eigenvalues, while the single nonzero eigenvalue χ equals the 
sum of the diagonal elements of Φ: χ = ϕ

11
(1 + (β21)2 + (β32β21)2 + (β43β32β21)2). 

This implies that Φ has rank 1. The eigenvector eχ associated with the single nonzero 
eigenvalue χ is: 
 
 eχ = (√χ)-1[1, β21, β32β21, β43β32β21]' 
 
Hence if it is assumed that Ψ = diag[ϕ

11
, 0, 0, 0] in the quasi-simplex, then it reduces 

to a 1-factor model in which the variance of the univariate factor equals φ11 = ϕ
11

 and 
the vector of factor loadings equals λ = √χeχ. Consequently, the 1-factor model is 
nested under the quasi-simplex model. 
 To give an arbitrary numerical illustration, take β21 = 1, β32 = 2, β43 = .5, ϕ

11 = 
1, and Θ = diag[1, 2, 3, 4]. Then the true covariance matrix associated with this 
simplex model is: 
 

  

        y(1) y(2) y(3) y(4)
y(1)
y(2)
y(3)
y(4)

 2            
 1 3  
 2 2 7
 1 1 2 5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 
The 1-factor model yields a perfect fit to this covariance matrix. If the univariate 
factor is scaled by fixing λ11 at λ11 = 1, the following parameter estimates are 
obtained: 
 
 λ = [1, 1, 2, 1]' 
 
 φ11 = 1    
 
 Θ = diag[1, 2, 3, 4] 
 
The parameter estimates for λ and φ11 conform to, respectively, √χeχ and φ11, after 
substitution of the quasi-simplex parameter values for βt,t-1, t=2,...,T, and ϕ

11 used in 
generating the covariance matrix. 
 The demonstration given above shows that leaving out the genuine 
innovations in a quasi-simplex model, i.e., constraining the innovation variances ϕ

t,t
 at 

ϕ
t,t = 0 for t=2,...,T, yields a standard 1-factor model. The reverse demonstration, 

namely that each 1-factor model is an instance of the quasi-simplex model in which 
ϕ

t,t = 0 for t=2,...,T, proceeds along the same lines and will not be spelled out here. 
For given dimension p of y

i the number of free parameters in the 1-factor model 
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equals the number of free parameters in the quasi-simplex model in which ϕ
t,t = 0 for 

t=2,...,T. For instance, in the numerical example p = T = 4, and the number of free 
parameters in both the 1-factor model and the constrained quasi-simplex model is 8. 
This implies that the degrees of freedom of the likelihood ratio test of each model is 
also equal (namely 2 in the numerical example).  
 One immediate consequence of the finding that the 1-factor model is nested 
under the quasi-simplex model concerns the way in which comparisons between these 
two models can be carried out. A model which is nested under another model 
constitutes a constrained version of the model under which it is nested. It therefore 
makes sense to denote the nested model as a constrained submodel of the model under 
which it is nested. Hence such a constrained submodel can be compared with the 
unconstrained model, or less severely constrained submodels, by means of the 
difference between the likelihood ratio of the unconstrained model (or a less severely 
constrained submodel) and the likelihood ratio of the constrained model under 
scrutination. It is not necessary to use alternative criteria for model comparison or 
model selection, such as Akaike's information criterion (Akaike, 1987).  
 It is noted that the nesting of the 1-factor model under the quasi-simplex 
model can also be conceived of as a purely formal affair. What I mean by this is that 
the equivalence between the 1-factor model and the constrained quasi-simplex model 
can be regarded as an algebraic mapping that does not depend upon the interpretations 
of both models involved. From this formal point of view the interpretation of the 
quasi-simplex model as a longitudinal factor model is immaterial to the equivalence 
between a constrained version of it with the 1-factor model. It then follows that any 1-
factor model, irrespective of the content of the observations making up y

i
, can be 

rewritten as a constrained quasi-simplex model. Of course this may imply that some 
of the parameters in Β in (2.2) are negative, but that would be immaterial to the 
validity of the formal equivalence concerned (see Jöreskog, 1970, for a discussion of 
negative parameters in Β in the context of longitudinal data).   
 

2.1.3  The orthogonal q-factor model as a quasi-simplex model 
 
 The extension of the approach given in the previous section to prove the 
equivalence between standard q-factor models, q > 1, and constrained quasi-simplex 
models would appear to be straightforward. As will be shown in the present section, 
this is indeed the case in that a standard q-factor model turns out to be a constrained 
latent q-variate simplex model. But I want to point out from the outset that this 
straightforward extension is not the only one which is possible. There exists another, 
more subtle and rigorous equivalence between standard q-factor models and 
constrained univariate quasi-simplex models. The latter equivalence can only be 
proven after some technical results from time series analysis have been introduced, 
and hence its presentation has to wait until a later section. 
 To make the generalization of the 1-factor model to q-factor models, q > 1, it 
suffices to explain the generalization to 2-factor models. Extensions to q-factor 
models, q > 2, then follow by straightforward induction. Hence in the present section 
the discussion is limited to 2-factor models. First the orthogonal 2-factor model is 
considered, followed by a discussion of the oblique 2-factor model.   
 The general (explorative) orthogonal 2-factor model for the p-variate manifest 
variable y

i
 can be represented as: 
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  y

i
 = Λη

i
 + ε

i
, η

i = [η
1i

, η
2i

]' 
(2.3) 
  Σy = ΛΛ' + Θ, Θ = diag[θ

11
, …, θ

pp
] 

 
where Λ denotes a (p,2)-dimensional matrix of factor loadings. The univariate latent 
factors η

1i and η
2i have been scaled by constraining their variances at φ11  = φ22  = 1.  

 Because (2.3) is a representation of a so-called explorative 2-factor model, it is 
presumed that there are no a prori constraints on Λ. That is, Λ is considered to be a 
(p,2)-dimensional matrix which consists of 2p free parameters (factor loadings). It is 
well-known that this leaves the explorative model (2.3) only identified up to 
orthonormal rotation. Post-multiplication of Λ by a (2,2)-dimensional orthonormal 
matrix R transforms a solution of (2.3) into an equivalent solution. The orthonormal 
rotation matrix R can be represented as: 
 

 R(α) =
cos(α) − sin(α)
sin(α) cos(α)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
where α is some angle in the range 0 ≤ α ≤ 2π. Because α can take on infinitely many 
values, there are infinitely many equivalent solutions of (2.3). The minimum 
constraint to arrive at a uniquely identified solution of (2.3) is to fix one element of Λ. 
For instance, this is accomplished by fixing λ12 at λ12 = 0. The constraint that λ12 = 0 
can always be realized by a unique choice of α. Let λ11 and λ12 denote the loadings 
associated with y1i in Λ. What we want is a unique rotation (within the range 0 ≤ 
α ≤ 2π) that transforms λ12 into *λ12 = -λ11sin(α) + λ12cos(α) = 0. This implies that 

the angle realizing this constraint equals α = tan-1(λ12 / λ11). Hence the minimum 
identifiability constraint that λ12 = 0 can be interpreted as the choice of a particular 
rotation orientation of the solution of (2.3).  
 The uniquely identifiable explorative 2-factor model will be chosen to be the 
one in which λ12 = 0. It is a simple exercise to show that this factor model is nested 
under a generalization of (2.2) involving two independent latent simplex processes. 
Let y

i
(t) denote the univariate observation at occasion t for subject i. Let y

i
 = 

[y
i
(1),...,y

i
(T)]' be the associated vector of longitudinal observations of subject i 

across the T fixed measurement occasions and ε
i
 = [ε

i
(1),...,ε

i
(T)]' the vector of 

measurement errors. Let η
1i

(t), t=1,...,T, and η
2i

(t), t=2,...,T, denote two latent simplex 
processes (note that the second simplex process η

2i
(t) starts at t=2). Define the (2T-1)-

dimensional vector η
i
 = [η

1i
(1), ..., η

1i
(T), η

2i
(2), ..., η

2i
(T)]' and the (2T-1)-

dimensional vector ς
i
 = [ς

1i
(1), ..., ς

1i
(T), ς

2i
(2), ..., ς

2i
(T)]'. With these definitions the 

generalization of (2.2) is obtained as: 
 
   y

i
 = Λη

i + ε
i

 
  η

i = Βη
i + ς

i

 19



 
Λ = [IT, Λ2] 

        
(2.4) 

 B =
B11 0
0 B22

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
 

 

  

B11 =

0 0 K 0 0
β2,1 0 L 0 0
. . .
. . .
0 0 βT, T−1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
 

 

⎥

 
 

 

  

B22 =

0 0 K 0 0
δ 3, 2 0 L 0 0
. . .
. . .
0 0 δT, T−1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
 

 

⎥

 
The (T, 2T-1)-dimensional matrix Λ is composed of two parts: the (T,T)-dimensional 
identity matrix IT associated with η

1i
(t), t=1,...,T, and the (T, T-1)-dimensional matrix 

Λ2 associated with η
2i

(t), t=2,...,T. The first row of Λ2 consists of T-1 zeroes, while its 
remaining part is IT-1. The (2T-1, 2T-1)-dimensional matrix B has two nonzero 
components: the (T,T)-dimensional submatrix BB11 associated with η

1i
(t) together with 

the (T-1, T-1)-dimensional submatrix B22B  associated with η
2i

(t). The distributional 
assumptions for (2.4) are similar to those for (2.2).  
 The bivariate latent simplex process in (2.4) can be written as: 
 
 η

1i
(t) = βt,t-1η1i

(t-1) + ς
1i

(t), t=2,...,T; η
1i

(1) = ς
1i

(1) 
 
 η

2i
(t) = δt,t-1η2i

(t-1) + ς
2i

(t), t=3,...,T; η
2i

(2) = ς
2i

(2) 
 
where it is understood that cov[ς

1i
(t), ς

2i
(t')] = 0 for all times t and t' at which this 

covariance is defined. Consequently,  
cov[η

1i
(t), η

2i
(t')] = 0 for all times t and t' at which this covariance is defined. In 

addition, it follows from (2.4) that: 
 
 y

i
(1) = η

1i
(1) + ε

i
(1) 

 
 y

i
(t) = η

1i
(t) + η

2i
(t) + ε

i
(t), t=2,...,T 
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 It now only requires a straightforward generalization of the discussion given in 
the previous section to show that the following constrained instance of (2.4) reduces 
to the explorative orthogonal 2-factor model:  
 
  η

1i
(t) = βt,t-1η1i

(t-1), t=2,...,T; η
1i

(1) = ς
1i

(1) 
 
  η

2i
(t) = δt,t-1η2i

(t-1), t=3,...,T; η
2i

(2) = ς
2i

(2) 
(2.5) 
  y

i
(1) = η

1i
(1) + ε

i
(1) 

 
  y

i
(t) = η

1i
(t) + η

2i
(t) + ε

i
(t), t=2,...,T 

 
Note that the latent simplex process η

1i
(t) has no innovations after the first time point 

t=1 at which it is defined, while the latent simplex process η
2i

(t) has no innovations 
after the first time point t=2 at which it is defined. It follows that the (2T-1, 2T-1)-
dimensional covariance matrix Φ = (I2T-1 - Β)-1Ψ(I2T-1 - Β')-1 of η

i associated with 
the constrained latent bivariate simplex model (2.5) has rank 2.  
 To illustrate the nesting of the orthogonal 2-factor model (2.3) under the latent 
2-variate simplex model (2.5), let the dimension of the manifest vector y

i
 be T = p = 

5. In addition, for the first univariate simplex component process η
1i

(t) the following 
parameter values are chosen: βt,t-1 = 0.9, t=2,3,4,5, and var[ς

1i
(1)] = 1. For the second 

univariate simplex component η
2i

(t) the following parameter values are chosen:  δ3,2 = 
1, δ4,3 = 2, δ5,4 = .5, and var[ς

2i
(2)] =1. Note that these parameter values for η

2i
(t) are 

the same as for the numerical illustration given in the previous section. Finally, the 
covariance matrix of the measurement errors is Θ = diag[5, 4, 3, 2, 1]. The true 
covariance matrix associated with these parameter values for (2.5) is: 
 

  

      y(1) y(2) y(3) y(4) y(5)
y(1)
y(2)
y(3)
y(4)
y(5)

6.00
0.90 5.81
0.81 1.73 4.66
0.73 2.66 2.59 6.53
0.66 1.59 1.53 2.48 2.43

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 The 2-factor model (2.3) yields a perfect fit to this covariance matrix. The 
obtained parameter estimates are: 
 

 Λ = 

1.00 0.00
0.90 1.00
0.81 1.00
0.73 2.00
0.66 1.00

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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 Θ = diag[5, 4, 3, 2, 1] 
 
The first column of Λ in the factor solution has the pattern [1, β21, β32β21, β43β32β21, 
β54β43β32β21]', for the values βt,t-1 = 0.9, t=2,3,4,5. Hence the first univariate latent 
factor η

1i has loadings that equal the scaled eigenvector associated with the 
covariance matrix of the first constrained univariate latent simplex η

1i
(t). This pattern 

was analytically derived in the previous section. Similarly, the nonzero entries in the 
second column of Λ in the factor solution has the pattern [1, δ32, δ43δ32, δ54δ43δ32]', for 
the values δ3,2 = 1, δ4,3 = 2, δ5,4 = .5. Hence the second univariate latent factor η

2i has 
loadings that equal the scaled eigenvector associated with the covariance matrix of the 
second constrained univariate latent simplex η

2i
(t). Note again that these factor 

loadings in the second column of Λ equal those obtained in the numerical illustration 
given in the previous section.  
 The argumentation and numerical illustration given above bear a close 
resemblance to the argumentation and numerical illustration given in the previous 
section. Apart from details related to minimum identifiability constraints, the 
argumentation given in the present section decomposes into a twofold proof, one for 
each univariate latent simplex component process, where each part of the proof 
repeats the steps in the proof given for the nesting of the 1-factor model under the 
latent univariate simplex as given in the previous section. This implies that analogous 
remarks can be made to the ones given at the end of the previous section concerning 
the implications of this nesting relation for model selection and with respect to the 
interpretation of this nesting relation as a formal relationship not tied up with 
longitudinal data. And what holds for the proof of the nesting of the explorative 
orthogonal 2-factor model under the latent 2-variate simplex model can be 
generalized straightforwardly to proofs of the nesting of explorative orthogonal q-
factor models, q > 2, under the latent q-variate simplex model. I leave the 
specification and elaboration of these implications and generalizations to the reader, 
and instead proceed with a discussion of the relationship between the oblique q-factor 
model and the latent q-variate simplex model. 
 

2.1.4  The exploratory oblique q-factor model as a quasi-simplex 
model 
 
 In discussing the nesting of oblique q-factor models under latent q-variate 
simplex models, it is convenient to distinguish between exploratory oblique q-factor 
models on the one hand, and confirmative oblique q-factor models on the other hand. 
It is not my intention to suggest that this distinction is fundamental; it is merely used 
in order to ease the argumentation. In addition, for the same reasons why only the 
exploratory orthogonal 2-factor model has been considered, attention will be 
restricted in what follows to a consideration of exploratory and confirmatory oblique 
2-factor models. 
 The exploratory oblique 2-factor model is given by: 
 
 y

i
 = Λη

i
 + ε

i
, η

i = [η
1i

, η
2i

]' 
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(2.6) 
 Σy = ΛΦΛ' + Θ, Φ = cov[η

i
, η

i
'], Θ = diag[θ

11
, …, θ

pp
] 

 
where Λ is again a (p,2)-dimensional matrix of factor loadings. The distributional 
assumptions are the same as for the exploratory orthogonal 2-factor model (2.3). 
Because (2.6) is considered to be an exploratory model, there are no a priori 
constraints on Λ. Hence, like for the exploratory orthogonal model (2.3), it only 
remains to introduce minimal constraints on Λ to guarantee unique identifiability. In 
contrast to exploratory orthogonal factor models, however, there does not appear to be 
a simple rule to arrive at uniquely identifiable exploratory oblique factor models. Of 
course it is always possible to test for identfiability by means of alpha-numerical 
software (e.g., Maple, cf. Heck, 1996), or by means of simplifications of such alpha-
numerical checks (Bekker, Merckens, & Wansbeek, 1994). But such a test, involving 
a check of the rank of the first-order derivative of any likelihood-like function (cf. 
Wooldridge, 1994) with respect to the free parameters, does not by itself yield the 
minimum number of constraints to arrive at unique identifiability in a direct way. It is 
required to carry out a search over all plausible alternatives to detect what may be the 
minimum number of constraints, where each alternative is subjected to the alpha-
numerical test.  
 With respect to the unique identifiability of exploratory oblique factor models 
a different, more pragmatic, approach will followed. This approach is based on 
Jöreskog (1969) and consists in the transformation of an exploratory oblique q-factor 
models to an equivalent exploratory orthogonal q-factor model. Such a transformation 
is always well-defined. In particular, the oblique model (2.6) is transformed to the 
oblique model (2.3). This can be accomplished by considering the so-called spectral 
decomposition of the covariance matrix Φ of η

i
: Φ = EDE', where the columns of E 

are the eigenvectors of Φ and where D is a diagonal matrix containing the eigenvalues 
of Φ along the diagonal. Because Φ is at least nonnegative-definite, the eigenvalues 
of Φ are nonnegative. Hence the square roots of the diagonal elements of D are well 
defined and D can be written as D = D1/2D1/2, where D1/2 is a diagonal matrix 
containing the square roots of the eigenalues of Φ along the diagonal. Now define Λ* 
= ΛED1/2. Then in terms of the transformed matrix of factor loadings Λ*, (2.6) 
transforms into the equivalent model: y

i
 = Λ*η

i
 + ε

i
, Σy = Λ*Λ*' + Θ. The latter 

model is an instance of (2.3), the exploratory orthogonal 2-factor model. Because it 
has already been shown that (2.3) is nested under the latent 2-variate simplex model 
(2.4), and because (2.6) has been transformed to (2.3), the nesting of (2.6) under (2.4) 
follows. 
 The line of argumentation showing that the explanatory oblique 2-factor 
model is nested under the latent bivariate simplex model can be detailed somewhat 
further by using the Choleski decomposition instead of the spectral decomposition of 
Φ. The Choleski decomposition of the covariance matrix Φ in (2.6) is defined as Φ = 
LU, where L is a lower-triangular matrix and U = L'. For instance, if Φ is a (2,2)-
dimensional correlation matrix, Φ and its associated Choleski component  L are: 
 

(2.7)  Φ  = 
1 ρ
ρ 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
 
  L = 

⎥
1 0
ρ (1− ρ2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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 Suppose that the covariance matrix of η
i in (2.6) is given by the correlation 

matrix Φ specified in (2.7) Define Λ* = ΛL, where L is the lower-triangular Choleski 
component given in (2.7). Then the oblique 2-factor model (2.6) transforms into the 
equivalent model: y

i
 = Λ*η

i
 + ε

i
, Σy = Λ*Λ*' + Θ, which is again an instance of the 

orthogonal 2-factor model (2.3). Using this transformation of (2.6) to (2.3), one can 
further specify the relationships between the factor models and latent simplex models, 
as will be shown in the following example.  
 To illustrate the discussion in this section, the covariance matrix Σy associated 
with a restricted bivariate latent simplex with correlated innovations is determined. 
This covariance matrix is subjected to an orthogonal 2-factor analysis, yielding a 
perfect fit. It is shown how the factor loadings in this orthogonal factor model are 
related to the parameters in the correlated bivariate latent simplex. In the final step it 
is shown that an orthogonal bivariate latent simplex also yields a perfect fit to Σy, and 
it is shown how the parameters in this orthogonal latent simplex model are related to 
the parameters in the correlated latent simplex model used to generate Σy.  
 The structural equations defining the bivariate latent simplex model with 
correlated innovations are given by (2.5) in the previous section, and are repeated 
below: 
 
  η

1i
(t) = βt,t-1η1i

(t-1), t=2,...,T; η
1i

(1) = ς
1i

(1) 
 
  η

2i
(t) = δt,t-1η2i

(t-1), t=3,...,T; η
2i

(2) = ς
2i

(2) 
(2.5) 
  y

i
(1) = η

1i
(1) + ε

i
(1) 

 
  y

i
(t) = η

1i
(t) + η

2i
(t) + ε

i
(t), t=2,...,T 

 
 
Also the parameter values are the same as in the example described in the previous 
section: the dimension of the manifest vector y

i
 is T = p = 5 and for the first univariate 

simplex component process η
1i

(t) the following parameter values are chosen: βt,t-1 = 
0.9, t=2,3,4,5, and var[ς

1i
(1)] = 1. For the second univariate simplex component η

2i
(t) 

the following parameter values are chosen:  δ3,2 = 1, δ4,3 = 2, δ5,4 = .5, and var[ς
2i

(2)] 
=1. The only difference with the example in the previous section is that now 
cov[ς

1i
(1), ς

2i
(2)] = 0.7. Like in the example in the previous section, the covariance 

matrix of the measurement errors is Θ = diag[5, 4, 3, 2, 1]. The true covariance matrix 
associated with these parameter values for the restricted latent simplex with correlated 
innovations is: 
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      y(1) y(2) y(3) y(4) y(5)
y(1)
y(2)
y(3)
y(4)
y(5)

6.00
1.60 7.07
1.51 2.93 5.79
2.13 4.43 4.23 8.57
1.36 2.68 2.56 3.91 3.35

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 The orthogonal 2-factor model (2.3) yields a perfect fit to this covariance 
matrix. The obtained parameter estimates are: 
 

 Λ∗ = 

1.00 0.00
1.60 0.71
1.51 0.71
2.13 1.43
1.36 0.71

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 Θ = diag[5, 4, 3, 2, 1] 
 
Notice that the matrix of factor loadings is denoted by Λ∗. The reason is that it is the 
transformed matrix of factor loadings Λ* = ΛL, where L is the Choleski component 
given by (2.7). If the actual value of ρ, ρ = 0.7, used in generating Σy is substituted in 

L, then it follows that its inverse L-1 is given by: 
 

 L-1 = 
1 0
−.98 1.40

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
 
 

⎥
 
Postmultiplication of Λ* = ΛL by L-1 yields Λ, with numerical values:   
 

 Λ = 

1.00 0.00
0.90 1.00
0.81 1.00
0.73 2.00
0.66 1.00

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
The numerical values of Λ are exactly the same as the factor loadings obtained in the 
example in the previous section. 
 Let us pause for a moment and consider what has been established. A 
covariance matrix has been generated according to a restricted bivariate latent simplex 
with correlated innovations, where this correlation is ρ = cor[ς

1i
(1), ς

2i
(2)] = 0.7. 

Denote this model by RLSC and denote the orthogonal 2-factor model which is 
equivalent to the RLSC by OFMC.  All remaining parameters in the RLSC have the 
same numerical values as the latent simplex model used in the previous section to 
illustrate the nesting of the orthogonal 2-factor model under the bivariate latent 
simplex with independent innovations. Denote the latter model by RLSI and denote 
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the orthogonal 2-factor model which is equivalent to the RLSI by OFMI. RSLC and 
RLSI only differ in the correlation between the innovations (ρ = 0.7 and ρ = 0.0, 
respectively). The matrix of factor loadings Λ* in the OFMC turns out to have the 
form Λ* = ΛL, where L is the Choleski component given by (2.7) for ρ = 0.7 and 
where Λ is the matrix of factor loadings in the OFMI. Hence OFMC and OFMI have 
a simple relationship: the matrix of factor loadings Λ* in the OFMC equals the matrix 
of factor loadings Λ in the OFMI postmultiplied by the Choleski component L of the 
correlation matrix of the innovations in the RLSC. The relationships concerned can be 
written schematically as follows: 
 
 a) RLSC given by (2.5) with ρ = cor[ς

1i
(1), ς

2i
(2)] = 0.7 

 
 b) RLSC → Σc

y : generate Σc
y by RLSC 

 
 c) RLSC ↔ OFMC: equivalence of RLSC and OFMC 
 
 d) Substitute ρ = 0.7 in (2.7) → L  
 
 e)  RLSI given by (2.5) with ρ = cor[ς

1i
(1), ς

2i
(2)] = 0.0 

 
 f)  RLSI → Σi

y: generate Σiy by RLSI 
 
 g) RLSI ↔ OFMI: equivalence of RLSI and OFMI (see previous section) 
 
 h) Λ* = ΛL: Λ* in OFMC equals Λ in OFMI postmultiplied by L 
 
 This schema shows that the nesting of the exploratory oblique 2-factor model 
under the latent bivariate simplex with correlated innovations obeys the same rules as 
the nesting of the orthogonal 2-factor model under the latent bivariate simplex with 
independent innovations as described in the previous section. The only new feature is 
the Choleski component L, whose operation is described by h). The schema also 
shows that both the restricted latent bivariate simplexes with correlated innovations 
(RLSC) and independent innovations (RLSI) have been linked up with orthogonal 2-
factor models. According to c) the RLSC yields the OFMC and according to g) the 
RLSI yields the OFMI. This mapping of the RLSC on the OFMC is the basic feature 
of Jöreskog's (1969) approach to exploratory oblique factor analysis. It has the merit 
of sidestepping the identifiability issue with oblique factor models. Using this aspect 
of the Jöreskog (1969) approach precludes the need to specify the minimal 
identifiability constraints for the exploratory oblique 2-factor model (2.6). Instead, the 
well-known minimal identifiability constraints for orthogonal factor models suffice. 
 There remains one particular point that needs to be clarified. It concerns the 
distinction between the (2,2)-dimensional covariance matrix of the common factors in 
the factor model (2.6), cov[η

i
, η

i
'] = Φ, on the one hand, and the covariance matrix of 

the innovations in the restricted latent simplex with correlated innovations (RLSC) on 
the other hand. The RLSC is defined by (2.5) with the additional specification that 
cov[ς

1i
(1), ς

2i
(2)] = 0.7. The matrix equations underlying (2.5) are given by (2.4). In 

(2.4) the covariance matrix of the innovations is the (2T-1, 2T-1)-dimensional matrix 
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cov[ς
i
, ς

i
'] = Ψ. In the illustration given in this section, T = p = 5, consequently Ψ is a 

(9,9)-dimensional covariance matrix. The restrictions associated with the RLSC imply 
that Ψ has rank 2: all elements of Ψ are zero, save for ψ11 = var[ς

1
] = 1.0, ψ77 = 

var[ς
7
] =1, and ψ71 = cov[ς

7
, ς

1
] = 0.7. Obviously Ψ differs from Φ in that the 

respective dimensions are different. Yet, knowledge of Ψ enables one to reconstruct 
Φ, and vice versa. Hence the two covariance matrices are unambiguously related to 
each other. Notwithstanding this relationship, the Choleski decomposition (2.7) is 
defined with respect to Φ, not Ψ. This raises the question whether it is possible to 
define a Choleski decomposition of Ψ and construct a schema based on the Choleski 
component thus obtained which specifies the same relationships as the schema given 
above.  
 In the remainder of this section this question and some additional implications 
of the schema given above will be further elaborated. The following discussion may 
be skipped on first reading, as it is only tangentially related to the main line of 
argument in this chapter.  
 It is of course possible to define a Choleski decomposition for the (2T-1, 2T-
1)-dimensional innovations covariance matrix Ψ associated with the RLSC. Denote 
the lower-triangular Choleski component thus obtained by Δ. Premultiplication of the 
structural matrix equation η

i = Βη
i + ς

i in (2.4) by Δ-1 then yields: Δ-1η
i =  

Δ-1Βη
i + Δ-1ς

i
. Let Β* = Δ-1ΒΔ, η

i
* = Δ-1η

i , and ς
i
* = Δ-1ς

i
. Accordingly, the 

transformed structural equation becomes: η
i
* = Β*η

i
* + ς

i
*, where cov[ς

i
*, ς

i
*'] is 

diagonal. However, Β* does not have the required structure as specified by (2.4) in 
that its (T+2, 1)-th element is nonzero. Consequently, this straightforward approach to 
transformation in the latent simplex model does not work properly. 
 The approach underlying the schema given above consists in relegating 
transformation in restricted latent simplex models to transformation in equivalent 
factor models. That is, the (2T-1, 2T-1)-dimensional innovations covariance matrix Ψ 
of rank 2 is collapsed into the (2,2)-dimensional factor covariance matrix Φ. Choleski 
decomposition of Φ then yields the desired transformation. To complete this 
approach, it is required to translate the results obtained in terms of factor models back 
to latent simplex models. This inverse relationship can be defined straightforwardly, 
as I will show now. 
 To start with, we go back to the discussion of the numerical illustration in the 
previous section. The illustration concerned the relationship between the RLSI (2.5) 
and the OFMI (2.3). More specifically, it was shown that the first column of Λ in the 
OFMI has the pattern [1, β21, β32β21, β43β32β21, β54β43β32β21]', for the values βt,t-1 = 
0.9, t=2,3,4,5, used in generating the manifest covariance matrix in that illustration. 
Hence the first univariate latent factor η

1i has loadings that equal the scaled 
eigenvector associated with the covariance matrix of the first constrained univariate 
latent simplex η

1i
(t) in (2.5). Similarly, the nonzero entries in the second column of 

Λ in the OFMI has the pattern [1, δ32, δ43δ32, δ54δ43δ32]', for the values δ3,2 = 1, δ4,3 = 
2, δ5,4 = .5, used in generating the manifest covariance matrix in that illustration. 
Hence the second univariate latent factor η

2i has loadings that equal the scaled 
eigenvector associated with the covariance matrix of the second constrained 
univariate latent simplex η2i(t) in the RLSI. This specific patterning of the columns 
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of the matrix of factor loadings in the OFMI enables the transformation from factor 
solutions back to latent simplexes. 
 Consider first the matrix of factor loadings in the illustration given in the 
present section concerning the relationship between the RLSC and the OFMC. This 
matrix is repeated below for convenience: 
 

 Λ∗ = 

1.00 0.00
1.60 0.71
1.51 0.71
2.13 1.43
1.36 0.71

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
Λ∗ is the matrix of factor loadings in an orthogonal 2-factor model where cov[η

i
, η

i
'] 

= I2. While the manifest covariance matrix Σc
y to which it is fitted has been generated 

by the RLSC, the common factors in the OFMC are independent. Hence the pattern of 
each column in Λ∗ corresponds to a restricted latent bivariate simplex with 
independent innovations. It is emphasized that the latter restricted latent bivariate 
simplex with independent innovations is not the RLSI used in the illustration in the 
previous section and mentioned in the schema given above. In contrast, it is the 
rotated RLSC, where the rotation has removed the correlation between the 
innovations. This rotated RLSC has not yet been considered in the discussion, nor has 
it been fitted to Σc

y . Its parameter values, however, can be recovered from Λ∗. 
 Consider the first column in Λ∗:  [1.00, 1.60, 1.51, 2.13, 1.36]'. The first 
element has already the required value of 1.0. The second element equals β21 = 1.60. 
The third element equals β32β21 = 1.51, hence β32 = 1.51/1.60 = 0.94. Etc. In fact, all 
β-parameters can be recovered from the first column by the same algorithm:  
 
 βt,t-1 = λt / λt-1, t=2,3,4,5,  
 
where λt denotes the t-th element of the first column of Λ∗. Accordingly, the first 
factor in the OFMI corresponds to a restricted latent simplex with parameters: β21 = 
1.60, β32 = 0.94, β43 = 1.41, and β54 = 0.64. The variance of the innovation at t = 1 is 
var[ς

1i
(1)] = 1.0. This completes the description of the first latent univariate simplex.  

 The second column in Λ∗ is: [0.0, 0.71, 0.71, 1.43, 0.71]'. Application of the 
same algorithm as before to the nonzero elements (i.e., for t=3,4,5) in this second 
column yields: δ3,2 = 1, δ4,3 = 2, δ5,4 = .5. But now the first nonzero element of the 
second column does not have the required value of 1.0. This is accommodated by 
taking the variance of the innovation at t = 2 to be var[ς

2i
(2)] = (0.71)2. This 

completes the description of the second latent univariate simplex. Furthermore, 
cov[ς

1i
(1), ς

2i
(2)] = 0.0, implying that the complete latent bivariate simplex has 

independent innovations. 
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2.1.5  The confirmatory oblique q-factor model as a quasi-simplex 
model 
 
 In contrast to the preceding sections, where we had to deal with minimal 
identifiability issues associated with exploratory multifactor models, it is assumed in 
the present section that a confirmatory oblique q-factor model always is identifiable. I 
consider this identifiability criterion to be a necessary part of the definition of a 
confirmatory model. It then becomes a straightforward exercise to show that the 
confirmatory oblique q-factor model is nested under the latent q-variate simplex with 
correlated innovations. Again, for the same reasons as before, only the confirmatory 
oblique 2-factor model will be considered.  
 Using the same argumentation as in the previous sections, it can be shown that 
the confirmatory oblique 2-factor model given by: 
 
 y

i
 = Λη

i
 + ε

i
, η

i = [η
1i

, η
2i

]' 
 
 Σy = ΛΦΛ' + Θ, Φ = cov[η

i
, η

i
'], Θ = diag[θ

11
, …, θ

pp
] 

 
is nested under the latent bivariate simplex with correlated innovations. Let Ik ⊆ 
{1,...,p} denote the set of indices of free factor loadings in the k-th column of Λ, 
k=1,2. In addition, let ik(1) be the first element of Ik and let Jk = Ik - ik(1), i.e., Jk  is Ik 
without its first element ik(1). Then the confirmatory oblique 2-factor model is 
equivalent to the following restricted latent bivariate simplex with correlated 
innovations: 
 
 η

1i
(t) = βt,t-1η1i

(t-1), t ∈ J1; η1i
(i1(1)) = ς

1i
(i1(1)) 

 
 η

2i
(t) = δt,t-1η2i

(t-1), t ∈ J2; η2i
(i2(1)) = ς

2i
(i2(1)) 

 
 y

i
(t) = L1η1i

(t) + L2η2i
(t) + ε

i
(t), 

 
where Lk = 1 if t ∈ Ik, k=1,2, and Lk = 0 otherwise. Moreover, var[ς

1i
(ik(1))] = 

var[η
ki

], k=1,2, and cov[ς
1i

(i1(1)), ς
2i

(i2(1))] = cov[η
1i

, η
2i

]. 
 To illustrate, consider the confirmatory oblique 2-factor model given by: 
 

 Λ = 

1.00 0.00
0.90 1.00
0.81 1.00
0.73 2.00
0.00 1.00

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 

 Φ = 
1.00
0.70 1.00

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
 Θ = diag[5, 4, 3, 2, 1] 
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In this particular model I1 = {1,2,3,4}, the set of indices of free factor loadings in the 
first column of Λ; i1(1) = 1, the first element of I1; J1 = {2,3,4}, which is I1 minus 
i1(1). In addition, I2 = {2,3,4,5}, the set of indices of free factor loadings in the second 
column of Λ, i2(1) = 2, and J2 = {3,4,5}. It then follows that this factor model is 
equivalent to the restricted latent bivariate simplex with correlated innovations in 
which var[ς

1i
(i1(1))] = var[ς

1i
(1)] = var[η

1i
] = 1, var[ς

2i
(i2(1))] = var[ς

2i
(2)] = var[η

2i
] 

= 1, and cov[ς
1i

(i1(1)), ς
2i

(i2(1))] = cov[ς
1i

(1), ς
2i

(2)] = cov[η
1i

, η
2i

] = 0.7. In addition, 
from the specifications of I1, etc., and using the computational rules given in the 
previous section it follows that, for the component simplex process η

1i
(t), βt,t-1 = 0.9, 

t=2,3,4, and for the simplex component η
2i

(t),  δ3,2 = 1, δ4,3 = 2, δ5,4 = .5. Both models 
yield the same covariance matrix: 
 

 

      y(1) y(2) y(3) y(4) y(5)
y(1)
y(2)
y(3)
y(4)
y(5)

6.00
1.60 7.07
1.51 2.93 5.79
2.13 4.43 4.23 8.57
0.70 1.63 1.57 2.51 2.00

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 The relationship between confirmatory oblique q-factor models and restricted 
latent q-simplex models turns out to be much more straightforward than the 
relationship between their respective exploratory analogues. This is due to the 
minimum identifiability constraints which have to be introduced for exploratory 
models, but are assumed to be already taken care of in confirmatory models.  
 

2.1.6 Reflections about factor models for longitudinal data 
 
 In the foregoing sections it was shown that factor models are nested under 
latent simplex models. This completes the first step in the long argument to which this 
chapter is devoted. Before going on with the remaining steps in this argument, I 
would like to pause and present in this section some reflections about factor models 
for longitudinal data.  
 As was indicated before, the equivalence between factor models and restricted 
latent simplex models can be regarded as a formal equivalence that holds whether or 
not the data are longitudinal. In the present section, however, it will be understood 
that the data are longitudinal. Hence the focus is on factor models for longitudinal 
data. I will present some considerations implying that factor models may not be 
appropriate models for longitudinal data. First, however, we have to make some 
conceptual distinctions.  
 The simple quasi-simplex model defined by (2.1) is an instance of the 
longitudinal factor model of Jöreskog (1979). Let yi(t) denote the p-variate vector of 
observations for subject i at time t; t=1,2,...,T. Then the longitudinal factor model is 
defined by: 
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  yi(t) = Λtηi(t) + εi(t), t=1,...,T; i=1,2,... 
 
  ηi(t) = Βt,t-1ηi(t-1) + ζi(t), t=2,...,T 
 
where Λt is a (p,q)-dimensional matrix of factor loadings at time t, ηi(t) is a q-variate 
latent factor at time t, εi(t) is p-variate measurement error at time t, Βt,t-1 is the (q,q)-
dimensional matrix of regression weights linking ηi(t) to ηi(t-1), and ζi(t) is q-variate 
innovation at time t. The quasi-simplex model (2.1) is obtained by taking p = q = 1 in 
the longitudinal factor model. Hence the quasi-simplex model is the longitudinal 1-
factor model for univariate time-dependent observations. Stated more succinctly, the 
quasi-simplex is a univariate longitudinal 1-factor model.  
 The factor models considered in the previous sections are of a different nature 
than the longitudinal factor model. These factor models are instances of Cattell's T-
technique (e.g., Cattell, 1946). According to Wohlwill (1973, p. 269): "... T-technique 
is not, properly speaking, a multivariate technique at all, at least in the sense of 
providing information concerning covariation among different response variables. In 
compensation, it allows for the examination of temporal patterns, for a single 
response measure, but for a sample of individuals." (italics in the original text). I do 
not entirely agree with Wohlwill's characterization of T-technique (I consider T-
technique to be a genuine multivariate technique which also can accommodate 
multiple response variables). But it nicely captures the essence of the technique. In 
what follows I will concentrate on factor models used in T-technique applied to 
univariate longitudinal data. 
 Wohlwill criticizes the use of T-technique in the following way: "The number 
of factors that would result is clearly very much determined by the spacing of the 
occasions ... In a developmental context, however, a different issue arises, relating to 
the effect of the dimension of temporal proximity or distance represented by the set of 
occasions. For such a set will inevitably form a simplex, in Guttman's sense, that is, 
the correlations will be maximal nearest the diagonal (that is, among adjoining 
occasions) and fall away systematically as the distance between the variables along 
the time (or any other) dimension increases." (Wohlwill, 1973, p.269). He then points 
out that: "The more basic point, however, ... is the fact that the factor-analytic model 
is fundamentally unsuited to data conforming to a simplex, because of the 
determination of the correlations by the single dimension of proximity (i.e., 
decreasing as an inverse function of the temporal interval separating them)." 
(Wohlwill, 1973, pp. 270-271).  
 I think that Wohlwill's criticism of T-technique is based on an interesting 
intuition, namely the possible unsuitability of factor models to accommodate the 
ordered time dimension, but his arguments do not appear to be definitive. Below I 
will present mathematical-statistical reasons underpinning aspects of Wohlwill's 
criticism. But first, a more heuristic argument is considered which would seem to 
corroborate Wohlwill's point of view. 
 The heuristic argument concerned is based on the recognition that factor 
models imply perfect predictability at the latent level. Take for instance the 1-factor 
model considered in section 2.1.2. It can be rewritten as a restricted quasi-simplex 
model in which only the initial condition at the latent level is random. More 
specifically, the 1-factor model is equivalent to the restricted latent univariate simplex 
given by: 
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  y
i
(t) = η

i
(t) + ε

i
(t), t=1,...,T 

 
  η

i
(1) = ς

i
(1); η

i
(t) = βt,t-1ηi

(t-1), t=2,...,T 
 
Only η

i
(1) = ς

i
(1) is random; the relationships η

i
(t) = βt,t-1ηi

(t-1), t=2,...,T, merely 
involve consecutive affine transformations of η

i
(1). Consequently, the (T,T)-

dimensional covariance matrix cov[η
i
, η

i
], where η

i = [η
i
(1),..., η

i
(T)]', has rank 1. 

Given this restricted quasi-simplex model, if η
i
(1) = ς

i
(1) is known for an arbitrary 

subject i, then η
i
(t)  is known for all other times t at which the model is defined. 

Stated otherwise, the 1-factor model for longitudinal data implies that within each 
subject i there exists at the latent level complete stability and perfect predictability 
across all time points. Such a state of affairs could be obtained if a genuine trait 
variable is repeatedly measured within a limited time span {t=1,...,T}. But many 
empirical processes do not obey this strict invariance criterion and will show less than 
perfect predictability. For the latter processes there will be random innovations at later 
time points t > 1, leading to an increase in the rank of cov[η

i
, η

i
], i.e., the rank of 

cov[η
i
, η

i
] > 1. If this rank is r, r ≤ T, then it would seem that r factors are required to 

describe cov[η
i
, η

i
]. This simple deduction holds if one could restrict attention to the 

latent level, that is, if measurement error ε
i
(t), t=1,...,T, is absent. The presence of 

measurement error, however, complicates the relationship between the rank of cov[η
i
, 

η
i
] in the quasi-simplex model and the required number of factors in equivalent factor 

models. But the general form of this relationship stays the same: if the rank of cov[η
i
, 

η
i
] in the quasi-simplex increases then the number of factors in equivalent factor 

models with additive measurement error also increases, though at a slower rate.  
 These considerations suggest that a T-technique 1-factor model for univariate 
longitudinal data requires perfect predictability at the latent level. The factor loadings 
in such a 1-factor model can be interpreted as a trend function: y

i
(t) = λ

t
η

i
 + ε

i
(t), 

t=1,...,T, where λ
t denotes the factor loading at time t. The ordered set of factor 

loadings {λ
t
, t=1,...,T} can be depicted as a time-dependent curve or trend function. 

Given the factor model concerned, and given the factor score η
a for an arbitrary fixed 

subject a, the latent trajectory λ
t
η

a
, t=1,...,T is a deterministic function. In case there is 

less than perfect predictability at the latent level at a sufficient number of 
measurement occasions, additional factors are required in T-technique in order to 
describe the additional random sources causing this decreased predictability (where 
the latter random sources are represented by the innovations in the equivalent quasi-
simplex model). The factor loadings associated with each additional T-technique 
factor can again be interpreted as another trend function. According to this scenario, a 
single quasi-simplex model defined at a an indefinitely increasing number of time 
points gives rise to an equivalent T-technique factor model with an indefinitely 
increasing number of factors. Consequently we have on the one hand a simple 
univariate latent simplex model and, on the other hand, an increasingly complex T-
technique factor model, both of which yield equivalent fits to longitudinal data with 
less than perfect predictability at the latent level. In this scenario I do not consider the 
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additional factors in the T-technique factor model, required to accommodate the lack 
of predictability in the latent univariate simplex process, to be spurious in a strict 
sense, as has sometimes been suggested in the literature (cf. the discussion of 
Cronbach's (1968) criticism of T-technique in Wohlwill, 1973, pp. 270-273). But it is 
obvious that there are important differences of some kind between both models. In 
order to try to explain what these differences amount to, I will have to make a short 
digression to the field of statistical time series analysis. 
 Consider a weakly stationary time series, for instance the simple 
autoregression described by: x(t) = ρx(t-1) + e(t), t=0,±1,..., where |ρ| < 1 and e(t) is 
white noise. In chapter 1 it was shown that the autocorrelation function of x(t) is: 
cx(u) = ρ|u|, u=0,±1,... Now consider x(t) at the time interval t=1,...,T. Then the (T,T)-
dimensional covariance matrix of x(t), t=1,...,T, is given by Cx = {cx(i-j) , i,j=1,...,T}. 

That is, the (i,j)-th element of Cx is given by cx(i-j) = ρ|i-j|. Cx  is called a Toeplitz 
matrix and is a prime example of a simplex in the sense of Guttman (1965). Of 
course, Cx is a covariance matrix of the same type as considered in T-technique. 
Letting T increase indefinitely, it can be shown that the eigenvectors of Cx become 
purely sinusoidal. A proof of this remarkable result can be found in Brillinger (1975, 
sections 3.7 and 4.7). Hence for large T a principal component analysis of a weakly 
stationary time series x(t), i.e., an eigenvalue decomposition of Cx , converges to a 
spectral analysis of x(t), t=0,±1,… .  
 The implications of the asymptotic equivalence (in some appropriate sense) of 
the time series analogue of T-technique and spectral analysis of a weakly stationary 
time series are manifold. Some of these implications will be discussed in the next 
chapter, but most of them (e.g., the asymptotic independence of loadings at different 
frequencies in spectral analysis) cannot be considered further here as it would lead us 
too far away from the main themes of this book. Presently I will focus on one 
noteworthy implication, namely that the factor loadings in T-technique analysis of 
weakly stationary time series coverge (again, in some appropriate sense) to purely 
sinusoidal form and therefore become, in Wohlwill's words cited above, determined 
"... by the single dimension of proximity (i.e., decreasing as an inverse function of the 
temporal interval separating them)". The sinusoidal form concerned is sin[2πf(t-1) + 
φf], t=1,2,...,T; where the frequency f = k/T, k=0,1,...,T-1, and hence is a function of 
the equidistant measurement occasions only (the restriction to equidistant 
measurement occasions is for convenience; cf., e.g., Papoulis, 1985, chapter 5, for 
irregularly spaced intervals, and Parzen, 1984, for random intervals). The phase φf is 
not important for our present concerns. Hence we have here one clear sense in which 
Wohwill's criticism of T-technique holds: the factor loadings in a T-technique 
analysis of weakly stationary time series become asymptotically a deterministic 
(oscillatory) function of frequency f and time t only.  
 According to the citation given earlier, Wohlwill considers a set of factor 
loadings of the form {sin[2πf(t-1) + φf], t=1,2,...,T; f = k/T, k=0,1,...,T-1} to be 
uninformative because these loadings do not provide "... information concerning 
covariation among different response variables". On first reading this may appear to 
be a simple statement of fact, because x(t) is a univariate time series and hence 
realizations at different measurement occasions t1 and t2, yielding univariate 
realizations x(t1) and x(t2), would seem to involve repeated measurements of the same 
response variable (namely the response variable represented by x). But on closer 
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scrutiny Wohwill's point of view may raise interesting questions. Suppose that the 
response variable x is the electrocortical potential (EEG) repeatedly registrated at a 
fixed location on the head. Applications of T-technique and spectral analysis to such a 
time series are standard in psychophysiology, and the resulting loadings associated 
with each T-technique factor are considered to describe the output of basic 
components of cortical information processing. Hence in this case such loadings are 
considered to be of prime importance and informative, in contrast to Wohlwill's 
conjecture. Or suppose instead that the response variable x is the total score on a 
psychological test and that at different times equivalent (e.g., parallel, congeneric, 
etc.) test forms are used (cf. Holtzman, 1963, for an application). Are the factor 
loadings obtained in an application of T-technique to such a time series still 
uninformative in the sense intended by Wohlwill? I doubt it, because that would seem 
to have serious implications for classical test theory. As a final comment on this issue, 
I would like to reiterate a point made earlier, namely that T-technique also applies to 
multivariate or multidimensional time series (Molenaar, 1981). Furthermore spectral 
analysis, i.e., the asymptotic form of T-technique, of multivariate or multidimensional 
time series is a standard tool in all kinds of scientific research. Again this state of 
affairs undermines Wohlwill's conjecture concerning the limitations of T-technique. 
 I conclude from these considerations that only part of Wohlwill's criticism of 
T-technique can be accepted, namely that the factor loadings obtained in a T-
technique analysis of a weakly stationary time series depend upon the time intervals 
between repeated measurements. Asymptotically this dependence becomes the set of 
deterministic sinusoidal functions underlying spectral analysis. But even in the latter 
extreme case (T-technique applied to the (T,T)-dimensional Toeplitz matrix Cx 
associated with a weakly stationary time series x(t), where T → ∞), the set of 
sinusoidal factor loadings thus obtained is informative about the autocorrelation 
function cx(u), u=0, ±1,..., making up Cx. This autocorrelation function does not 
depend upon time t, but only on the lag u: cx(u) = cor[x(t), x(t+u)] for all t. Shifts 
along the time axis do not affect cx(u), and it is a fundamental result in abstract 
Fourier analysis that the set of sinusoidal functions constitutes the eigenfunctions of 
the operator defining such shifts (cf. Hannan, 1970, chapter 2, section 10). Although 
this is not the place to elaborate this beautiful result, it shows that even in the extreme 
case under consideration T-technique yields factor loadings that correctly characterize 
the special nature of a shift-invariant autocorrelation structure. Hence these factor 
loadings are not spurious or uninformative, despite their deterministic functional 
dependence upon the time intervals between repeated measurements. The picture 
becomes more complex in case measurement error is present and T is finite, but I am 
confident that this will not affect the informativeness of results of T-technique 
(although it will complicate the interpretation of factor loadings). The case of 
nonstationary time series is partly considered in Hannan (1970, chapter 2, section 6).   
 So T-technique cannot be dismissed on the grounds given by Wohlwill and it 
still remains to answer our initial question about the distinction between T-technique 
and the latent simplex model. Again a lead can be found in the literature about time 
series analysis. Jenkins & Watts (1968) characterize spectral analysis of weakly 
stationary time series as a multi-parametric approach, an approach that they consider 
to be akin to nonparametric approaches. This characterization makes explicit that 
standard spectral analysis is not based on a restrictive parametric model, but instead 
involves the application of a model with the maximum number of identifiable 
parameters, i.e., a saturated model. In contrast, the simple autoregression x(t) = ρx(t-
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1) + e(t) considered earlier is an instance of a restrictive parametric model. Following 
this lead, the difference between T-technique and latent simplex analysis could be 
characterized as the difference between a multi-parametric and a restrictive 
parametric approach.  
 Returning again to the setting of longitudinal models, what can be made of a 
characterization of T-technique factor analysis as a multi-parametric approach and 
latent simplex modeling as a restrictive parametric approach? Does this 
characterization indeed capture the differences between these two kinds of 
longitudinal models which were noted earlier in this section? I think it does, as can be 
shown by a simple argument. Consider again the general expression (2.2) for the 
covariance structure associated with the latent univariate simplex model: cov[y

i
, y

i
] = 

(IT - Β)-1Ψ(IT - Β')-1 + Θ, where y
i
 = [y

i
(1),...,y

i
(T)]'. Compare this with the general 

expression for the T-technique factor model for y
i
: cov[y

i
, y

i
] = ΛΦΛ' + Θ. If we 

define: Λ* = (IT - Β)-1, then the latent univariate simplex model can be represented as 
an orthogonal T-technique factor model: cov[y

i
, y

i
] = Λ*ΨΛ*' + Θ, where Ψ is 

diagonal. 
 To illustrate, let T = 4 in (2.2). Then the (4,4)-dimensional matrix Λ* = (IT - 

Β)-1 of factor loadings in the T-technique model representing this latent univariate 
simplex is: 
 

 Λ* = 

1 0 0
β2,1 1 0
β2,1β3, 2 β3, 2 1 0
β2,1β3, 2β4, 3 β3, 2β4, 3 β4, 3 1

0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
 

 

⎥

 
Clearly, Λ* has a very restrictive parametric structure; its 16 elements depend upon 
only 3 free parameters β2,1, β3,2 and β4,3. In contrast, the general T-technique model 
for T = 4 repeated measurements has no such restrictive parametric structure. Letting 
Φ = I4, the (4,4)-dimensional matrix of factor loadings Λ is: 
 

 Λ = 

λ11 0 0 0
λ21 λ22 0 0
λ31 λ32 λ33 0
λ41 λ42 λ43 λ44

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 
 

⎥
⎥ 

 
The lower triangular pattern of Λ solely expresses the identifiability conditions for 
orthogonal explorative factor models considered earlier. Therefore Λ is seen to 
contain the maximum number of 10 identifiable free parameters. Comparison of 
Λ and Λ* nicely illustrates the difference between the multi-parametric and the 
restrictive parametric approach. 
 In conclusion, it appears that the distinction between the longitudinal T-
technique factor model and the longitudinal quasi-simplex model can be characterized 
as one between a multi-parametric approach and a restrictive parametric approach, 
respectively. Before returning to the main line of argument, however, I would like to 
address a possible misunderstanding to which this conclusion might give rise. 
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Consider again the example just given in which for T = 4 the longitudinal latent 
univariate simplex is rewritten as a restrictive instance of the orthogonal T-technique 
model. One might be tempted to interpret this restrictive T-technique analogue of the 
quasi-simplex model as indicative of a nesting relationship. That is, it might be 
concluded that the quasi-simplex model is nested under the T-technique factor model. 
Of course, this conclusion would be the exact inverse of the point of view defended in 
this chapter! Yet it should be immediately evident that the restrictive T-technique 
analogue of the quasi-simplex model is NOT nested under the general T-technique 
model. For T = 4 the general orthogonal T-technique factor model is cov[y

i
, y

i
] = ΛΛ' 

+ Θ, where Λ is the (4,4)-dimensional matrix of factor loadings given above. This 
model has 14 free parameters, and therefore not identifiable (it beats the Ledermann 
bound; cf. Bekker, Merckens & Wansbeek, 1994, p. 84). Restricting the number of 
factors in this general T-technique model, in order to arrive at an identifiable model, 
never can lead to an analogue of the quasi-simplex model for T = 4 because the latter 
analogue factor model has 4 factors. Removing the measurement error variances in 
the general T-technique factor model, again to arrive at an identifiable model, also 
cannot lead to an analogue of the quasi-simplex model because the latter has nonzero 
measurement errors. There does not exist an identifiable T-technique factor model 
from which an analogue of the quasi-simplex model can be obtained by setting 
parameters at zero. Hence the quasi-simplex model is not nested under the factor 
model. The illustration given above should not be misinterpreted in this way; it was 
only given to characterize the difference between multi-parametric and restrictive 
parametric approaches. For the same reasons, the remark by Meredith & Horn (2001, 
p. 220) that their equation (7.13), in which a factor model analogue is given for the 
quasi-simplex model, "... clearly represents a factor analytic model" also should not 
be misinterpreted as indicating such a nesting relationship.  
 The only reason to stress the distinction between a relationship between 
models in which one model is represented as an instance of another type of model on 
the one hand, and on the other hand a relationship in which one model is nested under 
another model, is that the nesting relationship is much stronger (more restrictive) than 
the representation relationship. Nesting relationships constitute only a small subset of 
all representation relationships. This formal distinction is important (although to the 
best of my knowledge it has not been worked out in all its aspects) and its importance 
is not affected by the difficulties that beset the use of the nesting relationship in 
comparative model testing (cf. Titterington, Smith, & Makov, 1985). 
 
 

2.1.7 The latent growth curve model as quasi-simplex model 
 
 Instead of considering hierarchical linear models in general, I will restrict 
attention in this section to latent growth curve models. Latent growth curve models 
are simple, yet interesting and popular instances of hierarchical linear models. The 
simplicity of latent growth curve models will ease the argumentation given in this 
section. I expect that the same line of argumentation, showing that latent growth curve 
models are nested under the quasi-simplex model, will carry over to hierarchical 
linear models in general, although at present this has not been worked out in detail. A 
second reason to focus on latent growth curve models is related to a much cited paper 
of Rogosa & Willett (1985) in which it is claimed that the latent growth curve model 
and the quasi-simplex model are quite different models of longitudinal data. The 
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present section can be regarded as a refutation of this claim in that the latent growth 
curve model is shown to be a special instance of the latent simplex model. Another 
claim which is made in the paper of Rogosa & Willett (1985), namely that the quasi-
simplex model yields inappropriately good fits to data generated according latent 
growth curve models, is shown to be incorrect by Mandys, Dolan, & Molenaar 
(1994). 
 The line of reasoning in this section will be simple: it is shown that latent 
growth curve models are special instances of confirmatory factor models. Because it 
has already been shown in the previous sections that factor models are nested under 
the latent simplex model, it is concluded that latent growth curve models are nested 
under quasi-simplex models (nesting is a transitive relationship). The main part of this 
section will be devoted to analyses of an empirical data set, illustrating the nesting 
relationships concerned. 
 For an up to date description of latent growth curve models, including their 
representation as factor models and references to the published literature, the reader is 
referred to Bijleveld, & van der Kamp (1998, chapter 5). The focus in the present 
section is on simple latent growth curve models for univariate longitudinal data yi(t), 
t=1,2,...,T; i=1,2,... (the main results thus obtained can easily be generalized to 
multivariate longitudinal data). Following Bijleveld & van der Kamp (1998), the 
latent growth curve model for univariate longitudinal data can be represented as the 
following hierarchical two-level model: 
 
  yi(t) = Σk=1,qfk(t)βik + εi(t), t=1,...,T; i=1,2,...; 
(2.8) 
  βik  = μk + ζik, k=1,...,q. 
  
The first equation of (2.8) describes yi(t) as the sum of weighted trend functions 
fk(t)βik, k=1,...,q, and error εi(t). To ease the presentation, the error εi(t) will be 
considered to be independently normally distributed (Rovine & Molenaar, 2000, 
describe the use of several alternative error structures): ε

i
 ∼ℵ(0, Θ), where ε

i = [εi(1), 
..., εi(T)]' and Θ is its (T,T)-dimensional diagonal covariance matrix. The second 
equation of (2.8) describes the weight βik of the k-th trend function fk(t) as a linear 
combination of a mean μk  and a residual ζik. It is assumed that the residuals ζik obey a 
q-variate normal distribution: ζ

i
 ∼ℵ(0, Φ), where ζ

i = [ζi1, ..., ζiq]' and Φ is its (q,q)-
dimensional covariance matrix. Consequently, β

i
 ∼ℵ(μ, Φ), where β

i = [βi1, ..., βiq]' 
and μ = [μ1, ..., μq]'. 
 The latent growth curve model (2.8) can readily be transformed to a 
confirmatory oblique q-factor model by defining the (T,q)-dimensional matrix of 
fixed loadings: 
 

 (2.9) Λ = 

  

f1(1) f2(1) L fq(1)
f1(2) f2(2) L fq(2)
. . .
. . .
f1(T) f2(T) L fq(T)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
 

 

⎥
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Letting yi = [yi(1), ..., yi(T)]', (2.8) can be represented as: 
 
(2.10) yi = Λβ

i
 + ε

i
, E[yi] = Λμ, cov[y

i
, y

i
] = ΛΦΛ' + Θ. 

 
 Clearly, (2.10) is a confirmatory oblique q-factor model and the latter model 
can be rewritten as a restricted latent simplex model, as is shown in section 2.1.5. 
Consequently, the latent growth model is nested under the latent simplex model. In 
fact, the latent growth curve model can be regarded as a confirmatory T-technique 
longitudinal factor model in which the factor loadings are fixed in such a way as to 
describe trend functions fk(t). This implies that the previous discussion of T-technique 
modeling carries over straightforwardly to the latent growth curve model. In 
particular, for a given subject there also exists perfect predictability at the latent level 
of the growth curve model. 
 The remainder of this section is devoted to illustrative analyses of an empirical 
longitudinal data set. The data have been obtained with 75 young adolescents who 
were administered a test measuring ego-strength at 6 repeated measurement 
occasions. The data were given to me several years ago by dr. Aline Sayers, then at 
Pennsylvania State University, with the request to fit a quasi-simplex model. Since 
then this data set has been regularly used as example in my annual structural equation 
modeling classes. The longitudinal means and covariance matrix are given below.   
 
Longitudinal Covariance Matrix Ego-Strength 
N=75 
  

 

t1

t2

t3

t4

t5

t6

361.14
202.33 307.88
265.77 226.00 404.93
227.27 214.95 265.56 367.55
227.64 186.76 289.48 239.37 477.63
109.31 105.10 111.55 134.50 196.30 287.15

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
Longitudinal Means Ego-Strength 
 
     t1         t2  t3     t4         t5  t6
 141.44     142.65     144.73     147.83     162.13     172.85 
 
 To start with, only the longitudinal covariance matrix will be considered; later 
on the longitudinal means will be included. The simplest latent growth curve model is 
obtained by defining in (2.8) a constant function f1(t) = c and a linear trend f2(t) = a + 
bt, t=1,...,6. It is customary (although not necessary) to choose c = 1 for the constant 
function f1(t). The values of a and b for the linear trend f2(t) also are arbitrary, hence 
in order to proceed we choose a = 0 and b = 1. This implies the following fixed 
pattern for Λ according to (2.9): 
 

Λ‘ = 
1 1 1 1 1 1
1 2 3 4 5 6

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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It appears that this simple latent growth curve model does not yield a satisfactory fit 
to the observed longitudinal covariance matrix: the likelihood ratio against a general 
positive-definite alternative yields a chi-square of 26.69 with 12 degrees of freedom. 
Under the usual assumptions the postulated model has a probability of P = .0086.  
 It should be stressed that the choice of the real-valued constants a, b and c in, 
respectively, f2(t) and f1(t) is arbitrary (save for the special values b = 0 and c = 0, of 
course). For instance, taking c = 2 in f1(t) and b =2 in f2(t) yields the same chi-square 
of 26.69 with 12 degrees of freedom. One could say that the latent growth curve 
model is identified up to the values of these constants, in a similar way as the 
exploratory multi-factor model is identified up to rotation. Another way to formulate 
the same state of affairs is that f1(t) and f2(t) are comparable to contrasts in analysis of 
variance: affine transformation of a contrast function leaves the outcomes of an 
analysis of variance invariant, like affine transformation of f1(t) and f2(t) leaves the fit 
of the latent growth curve invariant.  
 A variable x that is specified up to affine transformation, x* = a + bx, defines 
an interval scale (Suppes & Zinnes, 1963). The setting we are working in, the general 
linear model with normally distributed variables, is meant for interval scales of 
measurement and therefore should be invariant in the relevant sense under affine 
transformation. This is not the proper place to spell this out in detail, but in my 
opinion there is an unwarranted lack of interest in transformation theory in the social 
sciences (in contrast to, e.g., quantitative genetics; cf. Gianola, Im, Fernando, & 
Foulley, 1990; see also the impressive critique of Bookstein, 1990, on tests of gene-
environment interaction effects). Regarding the simple latent growth curve model 
under consideration, it turns out that is not invariant in all relevant aspects under 
affine transformation. Rovine & Molenaar (1998) show that affine transformation of 
the linear trend f2(t) affects the correlation cor[β

1
, β

2
] between the random weights 

associated with f1(t) and f2(t).  
More specifically, let a ≠ a* and define f2(t) = a + bt and f2(t)* = a* + bt. Then 

the fit of the model with Λ = [f1(t), f2(t)] will yield the same chi-square as the model 
with Λ∗ = [f1(t), f2(t)*], but cor[β

1
, β

2
] will be different between these two model 

variants. For instance in the model already fitted to the longitudinal ego-strength 
covariance matrix, a  = 0 and b = 1, yielding f2(t) = t, t=1,...,6. For this model the 
estimated cor[β

1
, β

2
] = -.63. Taking a* = -5 and b = 1 yields f2(t)* = t – 5, t=1,...,6. 

This model also yields a chi-square of 26.69 with 12 degrees of freedom, but the 
estimated cor[β

1
, β

2
] = -.04. In the first model the estimated negative correlation 

cor[β
1
, β

2
] = -.63 might be interpreted as the result of some law of initial value, in that 

a subject i having a relatively high level βi1f1(t) is expected to show a relatively slow 
linear growth β

i2
f2(t), and vice versa. But for the second model with affine 

transformed f2(t)*, the estimate  cor[β
1
, β

2
] = -.04 and this can no longer be 

interpreted as the effect of some law of initial value.  
 In general, the correlation between normally distributed random variables is 
invariant under affine transformation of one or both of the variables. Yet this turns out 
not to be the case for the correlation between the normally distributed random weights 
in the latent growth curve model. In fact, the effects of affine transformation of the 
trend contrasts fk(t) in (2.8) can be more wide-spread. For instance, the regression of 
the random weights β

k 
on explanatory variables also is affected by affine 

transformation of the fk(t). All this raises important questions about the ways in which 
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latent growth curve models behave under affine transformation. In particular, it raises 
doubts about the interpretability of the correlation between random weights in such 
models.  
 Returning to the example, a more elaborated latent growth curve model will be 
considered in an attempt to arrive at an acceptable goodness-of-fit to the observed 
longitudinal ego-strength covariance matrix. In addition to the constant level function 
f1(t) and the linear trend f2(t), a quadratic trend function f3(t) will be added to Λ. A 
general expression for a quadratic trend is f3(t) = d + et + gt2, where d, e and g > 0 are 
arbitrary real-valued constants. Presently, however, only the quadratic trend f3(t) = (t 
– h)2 will be considered, which is easily seen to be a special instance of the general 
quadratic expression. For the moment, let h = 0 , yielding f3(t) = t2. Hence Λ now has 
the following fixed pattern: 
 

 Λ’ = 
1 1 1 1 1 1
1 2 3 4 5 6
1 4 9 16 25 36

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

 
The fit of this model is acceptable: chi-square = 14.01 with 9 degrees of freedom, P = 
.12. Compared with the previous model fit, the difference in chi-square is 26.69 – 
14.01 = 12.68 with 3 degrees of freedom, which appears to be a significant 
improvement (P = .0056).  
 The estimated (3,3)-dimensional covariance matrix Φ of the random weights 
has entries with very high estimated standard errors (given in parentheses): 
 

 est-Φ = 

82.02
(129.70)

38.45 42.78
(69.76) (46.47)

−5.36 −8.52 1.70
(9.12) (6.57) (.99)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
Also the estimated correlation between β

2
 and β

3 
is close to –1, implying that est-Φ is 

close to being nonsingular (but apparently not exactly nonsingular, because the Lisrel-
8 program does not give a warning). All this is reason for concern about the model fit, 
despite the satisfactory value of the chi-square goodness-of-fit test.  
 There are various ways in which the questionable aspects of the obtained 
model fit can be tackled. Below I will discuss the possibility of removing the linear 
trend f2(t) and fit a model with only f1(t) and f3(t). But first some variants of the 
original model with all three trend functions will be considered. Our (conveniently 
restricted) definition of the quadratic trend is: f3(t) = (t – h)2, in which the value of h 
was chosen as h = 0. We now consider alternative values of h, for instance h = 5, 
yielding f3(t) = (t – 5)2. The remaining columns are kept the same as before: f1(t) = 1 
and f2(t) = t, t=1,...,6. The chi-square is the same as before: 14.01 with 9 degrees of 
freedom, P = .12. But now the estimated covariance matrix of the random weights is: 
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 est-Φ = 

1411.33
(403.32)

−226.73 42.23
(78.35) (15.60)

−47.01 8.46 1.70
(9.12) (3.67) (.99)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
 

 

⎥

 
It appears that now the estimated standard errors (within parentheses) of the elements 
of est-Φ are on the whole still larger than before, but the t-ratios of estimated (co-
)variance and standard error have much larger absolute values. This means that most 
simple univariate 95% confidence intervals do not include the value zero. However, 
the estimated correlation between β

2
 and β

3 
is still extreme: it is close to 1 and 

therefore the condition of est-Φ still is worrisome. 
 Of course one could carry out a systematic search over all possible affine 
transformations of f2(t) and f3(t), and select the model that improves the quality of est-
Φ the most. I deliberately leave the definition(s) of what constitutes this quality 
unspecified for further theoretical scrutiny. But the condition of est-Φ and the 
magnitudes of simple t-ratios are obvious candidates. I will not follow this approach 
any further here, because its rationale will be clear. Perhaps one can prove that this 
search will be in vain when it comes to removing certain aspects of the lack of quality 
of est-Φ. This constitutes a nice problem for mathematical statisticians, as part of the 
necessary work on the effects of transformations of variables to which I alluded 
earlier.  
 Another approach to arrive at a more satisfactorily fitting model is to consider 
latent growth curve models with only a subset of the trend functions {fk(t), k=1,2,3}. 
In particular, I will focus on models involving only the two latent growth curves f1(t) 
= 1 and f3(t) = (t – h)2, h = 0, .. ., 6. The obtained 7 model fits yield the following 
results: 
 
 h chi-square df P 
 0 22.92  12 .028 
 1 21.26  12 .047 
 2 17.82  12 .120 
 3 19.94  12 .068 
 4 30.11  12 .003 
 5 31.40  12 .002 
 6 30.17  12 .003 
 
 Clearly, the models are no longer equivalent in the sense of yielding the same 
chi-square values. The model in which h = 2 and f3(t) = (t – 2)2 yields an acceptable 
chi-square value, whereas the model in which h = 5 and f3(t) = (t – 5)2 yields the 
worst chi square value. This raises another question that to the best of my knowledge 
has not yet been worked out in the published literature: in latent growth curve models 
involving only a constant curve and a quadratic curve, the chi-square goodness-of-fit 
test is not invariant under a shift of the zero point of the time axis.  
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 Stated in a more general way, it appears that some nonlinear growth curve 
models are not invariant under affine transformation. This finding raises additional 
issues, in particular about the proper choice of the range of affine transformations of 
the time variable in nonlinear polynomials in time. For instance, in the quadratic trend 
curve f3(t) = (t – h)2, only seven integer-valued shifts h = 0, ..., 6 of the zero point of 
the time axis have been considered. This range of h values is quite arbitrary in that 
one could consider negative values for h, as well as noninteger values of h. Because 
the latter possibility of noninteger values for h involves a search over an uncountable 
infinity of model variants, it would seem to be solvable only by incorporating the shift 
h of the zero time point as an additional free parameter in the model fit. But then it 
should be assumed that the likelihood function (or any other criterion function) has a 
unique minimum as function of h. I do not know whether this assumption is always 
unproblematic.  
 In the context of this illustrative application we proceed with the solution for h 
= 2 (P = .12). The relevant details of this solution are: 
 

 Λ’ = 
1 1 1 1 1 1
1 0 1 4 9 16

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 

 est-Φ = 

261.39
(49.33)

−8.45 .86
(2.77) (.30)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
  ⎥

⎥ 
⎥ 
⎥ 

 
The elements of the estimate of diag-Θ are 88.00 (27.16), 123.96 (27.36), 117.82 
(25.36), 133.36 (25.96), 219.54 (40.43), and 93.83 (50.03). The estimated correlation 
between the random weights associated with the constant level and the quadratic trend 
is est-cor[β , β ] = -.56. 

1 3

 This latent growth curve model for the longitudinal ego-strength data, with a 
constant level and quadratic trend, will be rewritten as a restricted latent simplex 
model according to the rules set out previously. This will provide a nontrivial 
illustration of my claim that latent growth curve models are nested under latent 
simplex models. It is nontrivial in that a) there is a quadratic latent growth curve 
involved, b) this quadratic latent growth curve has random weight that is correlated 
with the random weight of the constant level function, and c) the quadratic latent 
growth curve is a polynomial in time t – h, where h = 2, t=1, ..., 6 (hence the time axis 
has undergone an affine transformation). The steps in the construction of the restricted 
latent simplex analogue will be made explicit for the benefit of the reader, although 
this involves some degree of repetition. Within the context of this illustration, the 
latent growth curve concerned will be referred to as the LGC, while its restricted 
latent simplex analogue will be referred to as the RLS. 
 The LGC is a confirmatory oblique 2-factor model. As explained in section 
2.1.5, each factor (random weight of latent growth curve) is described by a univariate 
latent simplex having only innovation at the initial time point. First the weighted 
constant level in the LGC is considered: β

i1
f1(t), where f1(t) = 1, t=1, ..., 6. For this 

constant level component the following univariate latent simplex is defined: 
   

 42



*)  η
1i

(t) = γt,t-1η1i
(t-1), t=2,...,6; η

1i
(1) = ς

1i
(1). 

 
The coefficients γt,t-1 in *) will be derived from the fixed values of f1(t). But first 
another univariate latent simplex is defined for the weighted quadratic trend curve in 
the LGC: 
 
**)  η

2i
(t) = δt,t-1η2i

(t-1), t=2,...,6; η
2i

(1) = ς
2i

(1). 
 
Again, the coefficients δt,t-1 in **) will be derived from the fixed values of f3(t) = (t – 
h)2. Together, *} and **) define a 12-variate vector  
  
  η

i
’ = [η

1i
(1), ..., η

1i
(6), η

2i
(1), ..., η

2i
(6)]. 

 
Because the observed longitudinal ego-strength scores of subject i define the 6-variate 
vector 
 
  yi = [yi(1), ..., yi(6)]' 
 
it follows that the matrix Λ in the RLS is the (6,12)-dimensional matrix 
 
  Λ = [I6, I6] 
 
Hence Λ consists of a concatenation of two (6,6)-dimensional unity matrices. Hence 
the relationship between yi and η

i
 is given by: 

 
  yi = [I6, I6]ηi

 + ε
i
, 

 
where ε

i
‘= [ε

1i
, ..., ε

8i
] and cov[ε

i
, ε

i
‘] = Θ is a diagonal (6,6)-dimensional covariance 

matrix. 
 The coefficients γt,t-1 in *) have to be obtained from the fixed values of f1(t) = 
1, t = 1, ..., 6. Notice that f1(t) constitutes the first column in the matrix of factor 
loadings of the LGC. It was shown in section 2.1.3 that factor loadings are a function 
of the coefficients of a restricted univariate latent simplex: Accordingly, the first 
column of factor loadings in the LGC are related to the coefficients γt,t-1  in *) in the 
following way: 
 
  f1(1) = 1 = 1 
  f1(2) = 1 = γ2,1

  f1(3) = 1 = γ3,2γ2,1

  f1(4) = 1 = γ4,3γ3,2γ2,1

  f1(5) = 1 = γ5,4γ4,3γ3,2γ2,1

  f1(6) = 1 = γ6,5γ5,4γ4,3γ3,2γ2,1  
 
Hence the coefficients γ

t,t-1 
can be obtained form the fixed values of f1(t) according 

to the following rule: 
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   γt,t-1 

= f1(t) / f1(t-1), t=2, ..., 6. 
 
It follows easily that γt,t-1 

= 1 for t = 2, ..., 6. 
 In a similar vein the coefficients δt,t-1 in **) are derived from the fixed values 
of f3(t) = (t – h)2. Given that h = 2,  we have that f3(2) = 0. This zero loading can be 
taken care of in the computation of the δt,t-1  coefficients in various ways. For instance, 
η

2i
(2) can be skipped in the latent simplex **) associated with f3(t). According to this 

approach η
2i

(3) is directly related to η
2i

(1) by  
 
  η

2i
(3) = δ3,1η2i

(1) 
 
while for η

2i
(t), t ≥ 3, the equations as specified by **) still hold. This leads to the 

following set of equations:  
 
  f3(1) =  1 = 1 
  f3(3) =  1 = δ3,1

  f3(4) =  4 = δ4,3δ3,1

  f3(5) =  9 = δ5,4δ4,3δ3,1

  f3(6) = 16 = δ6,5δ5,4δ4,3δ3,1
 
It then follows easily that δ3,1 = f3(3) / f3(1) = 1, δ4,3 = f3(4) / f3(3) = 4, δ5,4 = f3(5) / 
f3(4) = 2.25, and δ6,5 = f3(6) / f3(5) = 1.778.  
 Finally, the pattern of the (12,12)-dimensional covariance matrix Ψ of the 
innovations in the RLS has to be specified. According to *) there is only an 
innovation ς

1i
(1) associated with η

1i
(1), while according to **) there is only an 

innovation ς
2i

(1) associated with η
2i

(1). Because η
1i

(1) is the 1-st element of η
i
, and 

η
2i

(1) is the 7-th element of η
i
, only the diagonal elements ψ11 = var[ς

1i
(1)] and ψ77 = 

var[ς
2i

(1)] are free parameters. Moreover, ψ71 = cov[ς
1i

(1), ς
21

(1)] is a free parameter, 
expressing the covariance between the random weights in the LGC. This completes 
the specification of the RLS representing the LGC.  
 The fit of the RLS to the longitudinal covariance matrix of the ego-strength 
data is in all details the same as the fit of the LGC. The RLS chi-square is 17.82 with 
12 degrees of freedom (P = .12). In addition, est-ψ11  = 261.39 (49.33) in the RLS 
equals est-φ11 in the LGC, est-ψ77  = .86 (.30) equals est-φ22, and est-ψ71  =  
-8.45 (2.77) in the RLS equals est-φ21 in the LCG. Also the estimated diagonal 
elements of Θ in the RLS are the same as for the GLC. 
 If we return to the GLC and now fit (2.8) to the longitudinal mean trend and 
covariance matrix, the chi-square is 25.96 with 16 degrees of freedom (P = .055). In 
comparison with the fit of the LGC to only the longitudinal covariance matrix, the 
difference in chi-square values is 8.14 with 4 degrees of freedom (P = .085). This 
difference can be neglected, hence we conclude that the LCG yields a satisfactory fit 
to both the longitudinal trend and covariance matrix of the ego-strength data. The 
estimated mean of β1i associated with the constant level est-μ1 = 141.56 (2.01). The 
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estimated mean of β2i associated with the quadratic trend is est-μ2 = 1.98 (.14). The 
remaining parameter estimates are about the same as in the LCG for the longitudinal 
covariance matrix given earlier. The fit of the RLS to the longitudinal ego-strength 
means and covariances yields exactly the same chi-square value, estimated parameters 
and standard errors as the LCG. In particular, the estimated means of ς

1i
(1) and ς

2i
(1) 

are equal to est-μ1 and est-μ2 , respectively. 
 I would like to close the discussion of this example with a presentation of 
what might be one of the best fitting models to the longitudinal ego-strength means 
and covariance matrix. This is the following quasi-simplex (latent univariate simplex; 
cf. (2.1)): 
 
  ηi(t) = βt,t-1ηi(t-1) + ςi(t), t=2,...,6, 
 
  est-β2,1  = 1.01 (.001) 
  est-β3,2   = 1.02 (.001) 
  est-β4,3   = 1.02 (.001) 
  est-β5,4  = 1.10 (.002) 
  est-β6,5  = 0.47 (.100) 
 
  var[ςi(1)] = 219.76 (40.65) 
  var[ςi(5)] = 164.83 (79.84) 
  var[ςi(6)] = 124.23 (91.22) 
 
  E[ςi(1)] = 141.46 (2.18) 
  E[ςi(6)] = 96.25 (17.01) 
 
  var[ε1i] = 132.79 (18.46) 
  var[ε2i] = 132.79 (18.46) 
  var[ε3i] = 118.36 (24.66) 
  var[ε4i] = 126.07 (26.11) 
  var[ε5i] = 68.71 (73.55) 
  var[ε6i] = 68.71 (73.55) 
 
This quasi-simplex model yields a chi-square of 11.43 with 13 degrees of freedom (P 
= .57). In fact, most of the β-parameters could be restricted to be equal to each other, 
while the measurement error variances at time points 5 and 6 also could be restricted 
to equal zero. This would yield an even more flattering chi-square value for this 
model. Notice that the innovation variances at time points 2, 3 and 4 have been fixed 
at zero. Also the means of the innovations at time points 2, 3, 4 and 5 have been fixed 
at zero. Finally, note that the innovations variance at time point 6 has a rather small t-
ratio. I find this latent univariate simplex quite appealing, not only because of its 
excellent fit to the data, but also because it allows for an interesting interpretation of 
the process underlying ego-strength development. The development of ego-strength 
appears to be quite stable until time point 5 in that there are no genuine innovations at 
time points 2, 3 and 4 (remember that the initial time point 1 is special because  ηi(1) 
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cannot be explained: ηi(1) = ςi(1)). Also the means of the innovations at these time 
points 2, 3 and 4 equals zero. Then, at time point 5, zero-mean random innovations 
are injected into the developmental process: var[ςi(5)] = 164.83 and E[ςi(5)] = 0. At 
time point 6 this situation is more or less inverted in that the innovations have much 
less variance, but nonzero mean: var[ςi(6)] = 96.25 and E[ςi(6)] = 96.25. Hence the 
change in mean ego-strength (at time point 6) is preceded by a change in inter-
individual variation in ego-strength (at time point 5). Such a dynamic pattern is not 
uncommon for processes undergoing some kind of phase transition (van der Maas & 
Molenaar, 1992) or entering a sensitive period. Potentially interesting aspects of the 
development of ego-strength indeed! 
 We have come at the close of part one of this chapter, in which it has been 
shown that factor models and latent growth curve models are nested under latent 
simplex models. In the present section an elaborate illustration of this nesting 
relationship was shown for a latent growth curve model and a restricted bivariate 
latent simplex. In addition, an excellently fitting latent univariate simplex (quasi-
simplex) was considered for the same data. Perhaps the reader wonders what might 
possibly be the relationship between the bivariate latent growth curve model cum 
restricted bivariate latent simplex on the one hand, and the univariate latent simplex 
on the other hand. In the next part of this chapter, some new light will be casted on 
the latter question. There, it will be shown that there is a much more strict sense in 
which factor models, latent growth curve models and their restricted simplex 
analogues are related to the quasi-simplex (univariate latent simplex). An interesting 
offspin of this discussion is a proof of how all standard latent variable models can be 
rewritten as models having no latent variables.  
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2.2 A general scheme to manipulate latent variables, in particular to
remove latent variables from structural equation models

The centrality of latent simplex models, discussed in the previous part of this
chapter, opens up the possibility to focus attention on these models. Results obtained
for latent simplex models immediately carry over to factor models and latent growth
curve models, because the latter models are special instances of the former. This state
of affairs has some intellectual appeal, as well as some consequences for model
selection procedures like likelihood ratio tests, but it certainly is not my intention to
recommend the rather elaborate restricted latent simplex analogues of factor models
and latent growth curve models in applied data analysis. There is, however, an
additional aspect of the centrality of latent simplex models that has much more far-
reaching consequences. A latent simplex has a model structure that resembles a well-
known class of time series models, the class of autoregressive moving-average
(ARMA) models. This implies that theoretical results obtained for ARMA models
may carry over to latent simplex models, and hence also to factor and latent growth
curve models. In what follows I will present one such theoretical result for ARMA
models and show how a suitably adapted version of this result also applies to latent
simplex models. I then will elaborate some of the implications of this result, in
particular it will be shown how it is possible to transform latent simplex (factor, latent
growth curve) models into models without latent variables. Moreover, and this I
consider to be an equally intellectually inspiring result, it will be shown how latent q-
variate simplex models (q-factor models, q-variate latent growth curve models; q > 1)
can be rewritten as latent univariate simplex models. This opens up some new
perspectives. For instance, I will present a structural model involving a latent simplex
as well as a latent factor and rewrite that model as a latent univariate simplex. In the
original presentation of this model, the latent simplex has been associated with a
state-like process having less than perfect stability, whereas the latent factor has been
associated with a stable trait-like process (e.g., Hewitt, Eaves, Neal, & Meyers, 1988).
Given that the state-like simplex and the trait-like factor collapse into a single latent
simplex, it would appear that the distinction between state-like and trait-like
influences may not involve a fundamental qualitative difference.

To the best of my knowledge, much of what is presented below is new in the
field of structural equation modeling. Although the prerequisite ingredients from time
series analysis and state-space modeling are in themselves simple, they will be
described in the next section 2.2.1 in sufficient detail to make the argumentation
readily accessible to structural equation modelers. At the end of that section, a
theorem on the addition of ARMA models will be presented. This theorem will turn
out to have important consequences for structural equation models.

I realize that the contents of what follows contains much that is new to many
structural equation modelers. It therefore may be worthwhile to give some guidelines
that may be helpful in a first reading of this material. To start with, the definition of
ARMA models and their variants (like the NARMA models introduced later on)
should be taken at face value. These time series models are used as empirical models
with which (sequential) dependencies are described with as few parameters as
possible. It is not advised to try to interpret these models (although such
interpretations can be given): they are only used as convenient model structures
enabling the removal of latent variables from structural equation models. Only at the
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close of this chapter some interpretations of what has been accomplished in terms of
these time series models will be given. Secondly, in the course of the discussion some
rather involved algebraic manipulations will be presented. It should be kept in mind
that these algebraic manipulations serve a particular purpose, namely to prove the
equivalence of models with and without latent variables. Apart from this, all models
under consideration (with and without latent variables, ARMA, NARMA, etc.) are in
themselves linear models that can straightforwardly be fitted by means of the Lisrel
program (or equivalent programs). It is only the proof of their equivalence that
requires some more involved calculations. Thirdly, and lastly, the basic tenet of the
following discussion is to show that latent variables in factor models, latent growth
curve models and latent simplex models can be transformed away. This has important
implications for the status of these latent variables. An additional result that will be
proven is that different latent variables can be added (e.g., two factors in a factor
model can be added). Again, this has interesting implications for our understanding of
what latent variables are. In the final sections of this chapter it will be shown that
such manipulations of latent variables (addition, removal) constitute the beginnings of
a general transformation theory for structural equation models that has its roots in
mathematical systems theory.

2.2.1 Preliminary results from time series analysis

In this section all time series are univariate series. Some definitions of time
series models will be given in which mainly the occurrence of certain polynomials in
a formal operator is emphasized. Manipulation of these polynomials characterizing
time series models will enable a simple proof of the main result of this section,
namely a theorem given by Granger & Morris (1976).We start with the definition of
autoregressions, an instance of which was already discussed in chapter 1. The general
definition of an autoregression of order p, denoted by AR(p), where p ≥ 0 is an
integer, is:

y(t) + a1y(t-1) + a2y(t-2) + ... + apy(t-p) = e(t), t=0, ±1, ...

The term e(t) denotes white noise (cf. chapter 1): E[e(t)] = 0 and cov[e(t), e(t+u)] =
δ(u)σ2, u=0, ±1, ..., where δ(u) is Kronecker’s delta. Hence e(t) lacks sequential
dependence.

No attempt will be made to interpret AR(p) models; for this the reader is
referred to the many excellent textbooks (e.g., Box & Jenkins, 1970; Anderson, 1971;
Shumway & Stoffer, 2000). Here we only consider a particular representation of the
AR(p). Let B denote the so-called backward shift operator whose action is defined by:

By(t) = y(t-1)

It then follows immediately that Bvy(t) = y(t-v), where v ≥ 0 is an integer. An AR(p)
can therefore be represented as:

[1 + a1B + a2B
2 + ... + apB

p]y(t) =  e(t).
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A convenient notation for [1 + a1B + a2B
2 + ... + apB

p], the p-th order polynomial in
the backshift operator B, is a[B,p], resulting in the following representation of an
AR(p):

a[B,p]y(t) = e(t).

The presumed stationarity of y(t) implies that the absolute values of all roots of a[B,p]
= 0 are greater than 1 (notice that in general the roots are complex-valued).
Substituting Bv = exp[i2πv], v=1, ..., p, where i = √-1 is the imaginary unit, yields the
discrete Fourier transform of the AR(p) underlying spectral analysis of y(t). Also, the
autocovariance function cov[y(t), y(t+u)], u = 0, ±1, ... is a function of a[B,p].

The definition of a moving-average of order q, denoted by MA(q), where q ≥
0 is an integer, is:

y(t) = e(t) + b1e(t-1) + b2e(t-2) + ... + bqe(t-q), t=0, ±1, ...

where e(t) is again white noise with mean zero and variance σ2. Employing the
backward shift operator B again, the MA(q) can be represented as:

y(t) = b[B,q]e(t)

where b[B,q] = [1 + b1B + b2B
2 + ... + bqB

q] denotes the q-th order polynomial in the
backshift operator B. For finite order q, an MA(q) is always stationary. But special
care has to be taken about the choice of the roots of b[B,q] = 0 so that the inverse
b[B,q]-1 exists (cf. Molenaar, 1999). Like for an AR(p), the spectrum and the
autocovariance function of an MA(q) can be derived from b[B,q].

The definition of an autoregressive moving-average of order p and q, denoted
by ARMA(p,q), is:

a[B,p]y(t) = b[B,q]e(t), t=0, ±1, ...

where a[B,p] is defined in the same way as for an AR(p),  b[B,q] is defined in the
same way as for an MA(q), and e(t) is white noise with mean zero and variance σ2.
The spectrum and autocovariance function of an ARMA(p,q) are a function of a[B,p]
and b[B,q]. Notice that an ARMA(p,q) equals an MA(∞), that is a moving average of
infinite order The polynomial in the backward shift operator B associated with this
ARMA(p,q) = MA(∞) is given by the ratio b[B,q]a[B,p]-1. Hence one possible
interpretation of an ARMA(p,q) is that it yields an economical model involving p + q
+ 1 parameters (including the variance σ2 of e(t)) for an MA(∞) involving an
unbounded number of parameters. In a similar vein, an ARMA(p,q) equals an AR(∞),
where the latter AR(∞) has a polynomial in the backward shift operator B given by
the ratio a[B,p]b[B,q]-1. Hence another possible interpretation of an ARMA(p,q) is
that it yields an economical model for an AR(∞) involving an unbounded number of
parameters. Other possible interpretations of an ARMA(p,q) are given in the
textbooks alluded to earlier as well as by Granger & Morris (1976).

The definition of an ARMA(p,q), including the definitions of an AR(p) =
ARMA(p,0) and an MA(q) = ARMA(0,q) as special cases, is all we need for proving
a theorem of Granger & Morris (1976). The theorem concerned characterizes the sum
of two independent ARMA processes, where each ARMA process is considered to be
weakly stationary. This theorem will turn out to have important consequences for
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structural equation models. First the theorem will be proved, using only simple
aspects of the formal definition of an ARMA(p,q) given above. In fact, only the
orders of products of polynomials in the backward shift operator B will figure in the
proof. This should enable readers unacquainted with time series analysis to follow the
proof.

Consider two ARMA processes, x(t) and y(t), which each are weakly
stationary. Specifically, E[x(t)] = cx, cov[x(t), x(t+u)] = cx(u), E[y(t)] = cy, and
cov[y(t), y(t+u)] = cy(u). Without loss of generality, the means of x(t) and y(t) are
taken to be zero: cx = cy = 0. In addition, importantly, it is assumed that the
crosscovariance function between x(t) and y(t) is zero at all lags u: cov[x(t), y(t+u)] =
0 for all u = 0, ±1, ... The process models for x(t) and y(t) are, respectively,
ARMA(p,q) and ARMA(m,n):

ax[B,p]x(t) = bx[B,q]ex(t)

ay[B,m]y(t) = by[B,n]ey(t)

where ex(t) and ey(t) are white noise series with variance σx
2 and σy

2, respectively.
Now consider the sum of x(t) and y(t): z(t) = x(t) + y(t). Hence z(t) is the sum

of an ARMA(p,q) and an ARMA(m,n). Then the following theorem about z(t) can be
proved:

Theorem (Granger & Morris, 1976; Box & Jenkins, 1970)
Let x(t) be a weakly stationary zero mean ARMA(p,q) and y(t) a weakly

stationary zero mean ARMA(m,n). Let x(t) and y(t) be weakly orthogonal, i.e, the
crosscovariance function of x(t) and y(t) is zero at all lags. Then z(t) = x(t) +
y(t) is a weakly stationary zero mean ARMA(r,s), where r ≤ p + m and s ≤ max[p +
n, q + m]

Schematic proof.
As z(t) = x(t) + y(t), it follows that multiplication of this equality by

ax[B,p]ay[B,m] yields:

*) ax[B,p]ay[B,m]z(t) = ay[B,m]ax[B,p]x(t) + ax[B,p]ay[B,m]y(t)

But ax[B,p]x(t) = bx[B,q]ex(t) and ay[B,m]y(t) = by[B,n]ey(t). Substitution of the latter
equalities in the right-hand side of *) yields:

**) ax[B,p]ay[B,m]z(t) = ay[B,m]bx[B,q]ex(t) + ax[B,p]by[B,n]ey(t)

The order r of the polynomial product ax[B,p]ay[B,m] in the left-hand side of **) is not
larger than p + m. It can be smaller than p + m in case ax[B,p] and ay[B,m] have
common roots, which can be removed from ay[B,m] before the multiplication by
ax[B,p]ay[B,m] to arrive at *). Hence r ≤ p + m. The assumption that x(t) and y(t) are
weakly orthogonal implies that the crosscovariance function between ex(t) and ey(t) is
zero at all lags. In the right-hand side of **), the order of ay[B,m]bx[B,q] is not larger
than q + m (smaller than q + m in case common roots have been removed from
ay[B,m]) and the order of ax[B,p]by[B,n] equals p + n. Hence the order s of the sum of
polynomial products ay[B,m]bx[B,q] and ax[B,p]by[B,n] cannot be larger than the
maximum order of the summands: s ≤ max[p + n, q + m].
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The proof follows Granger & Morris (1976), but it is schematic in that it does
not address a technicality concerning the addition of the two moving average
components of the right-hand side of **). This technicality involves again the choice
of the roots of the polynomial in the backward shift operator B associated with
moving-averages (cf. Molenaar, 1999), the details of which can be found in Granger
& Morris (1976). On the other hand, the proof has been elaborated a bit in order to
convey as clearly as possible its basic structure. This will provide a convenient
starting point for our investigation in the next section of the possibility to remove
some of the restrictive conditions under which the proof has been obtained, in order to
make the theorem applicable to structural equation models.

The theorem implies that the sum of two weakly orthogonal as well as
stationary ARMA processes is again a weakly stationary ARMA process, where the
order of the latter ARMA process bears a simple relationship to the orders of the
summands. To give an elementary example, let x(t) be a first-order autoregressive
process, i.e., x(t) is an ARMA(1,0). In addition, let y(t) be a white noise process, i.e.,
y(t) is an ARMA(0,0). Assuming that x(t) and y(t) are weakly stationary and weakly
orthogonal, the theorem implies that their sum z(t) = x(t) + y(t) is an ARMA(1,1). It
will be shown in the next section that this ARMA(1,1) is closely related to the quasi-
simplex model, defined as the sum of a latent simplex and measurement error.

2.2.2 The addition of nonstationary simplex processes

In this section the theorem of Granger & Morris, henceforth referred to as
TGM, will be generalized so as to accommodate the addition of nonstationary
simplex processes occurring in a structural equation model. This will require the
removal of some of the restrictive assumptions underlying the TGM. But we also
need to transfer the generalized TGM thus obtained from its original context within
time series analysis to the new context of structural equation modeling. The latter
change of context involves the shift from an analysis of within-subject covariation to
an analysis of between-subject covariation, which will be discussed in the next
section.

TGM applies to weakly stationary ARMA processes. I will first elaborate
somewhat further the concept of stationarity and the various ways in which a process
can be nonstationary. It then can be specified unambiguously in which sense simplex
processes occurring in structural equation models are allowed to be nonstationary
without affecting TGM’s applicability. Throughout this section, all time series are
assumed to have zero mean function.

Consider one of the simplest ARMA processes, namely a zero mean first-
order autoregression, AR(1) = ARMA(1,0), given by:

a[B,1]y(t) = y(t) + a1y(t-1) = e(t), t = 0, ±1, ...

This model has to obey the following restrictions in order to describe a weakly
stationary process:

- the order of the polynomial a[B,1] has to be constant in time
- the coefficient of the polynomial a[B,1] has to be constant in time
- the absolute value of the root of a[B,1] = 0 has to be larger than 1
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- the variance of the white noise e(t) has to be constant in time

The first requirement stipulates that y(t) is an AR(1) for all times t. It rules out the
possibility of a structural change at some time point t0, after which y(t≥ t0) would

become another type of process (e.g., an ARMA(p,q) with p ≠ 1 and/or q > 0). The
second requirement restricts a1 to be a time-invariant coefficient, while the third

requirement implies that | a1 | < 1. The fourth requirement stipulates that var[e(t)] =

σ
2 

is time-invariant. A model obeying these four restrictions is called a weakly
stationary AR(1). In a similar vein, a general ARMA(p,q) model obeying suitably
adapted variants of these four restrictions is called a weakly stationary ARMA(p,q).

In case an ARMA process does not obey all four requirements, it is

nonstationary. Hence there are at least 2
4
 - 1 = 15  different kinds of nonstationary

ARMA processes (there are additional kinds of nonstationarity which are not tied up
with the four requirements given here; e.g., Cohen, 1995). To keep things a bit
manageable, it will be assumed that the first requirement is always met. That is, it is
assumed that ARMA processes do not undergo structural changes in the sense
indicated above. We therefore restrict attention to nonstationary ARMA(p,q)
processes with constant order p and q. The general expression for such a
nonstationary ARMA process, referred to as NARMA(p,q), is:

at[B,p]y(t) = bt[B,q]e(t), t=0, ±1, ...

var[e(t)] = σ(t)
2

(2.11)

at[B,p] = [1 + a1,tB + a2,tB
2
 + ... + ap,tB

p
]

bt[B,q] = [1 + b1,tB + b2,tB
2
 + ... + bq,tB

q
]

The polynomials at[B,p] and bt[B,q] in (2.11) have time-varying coefficients, while

the variance σ(t)
2 

of e(t) also is time-varying. Of course, not all these parameters of
(2.11) have to be time-varying simultaneously. For instance, a simple instance of a
NARMA(1,0) is one in which only the variance of e(t) is time-varying: y(t) + a1y(t-1)

= e(t), var[e(t)] = σ(t)
2
.

At the close of this section, I will discuss further, more heuristic, aspects of
NARMA processes. But first we proceed to the main result of this section: I claim
that nothing in the proof of the TGM precludes its application to NARMA processes.
The built-up of this proof was exceedingly simple:

- multiply z(t) = x(t) + y(t) by ax[B,p]ay[B,m]

- substitute for the ARMA expressions for x(t) and y(t)
- count the orders of the products of polynomials in B thus obtained

Nothing in these three steps of the proof hinges on the stationarity of x(t) and y(t).
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Stated more specifically, nothing in this proof exploits either the time-invariance of
the polynomials in the backward shift operator B making up the ARMA models for
x(t) and y(t), or the constancy of the variances of the innovations ex(t) and ey(t).

Hence my conjecture that the TGM generalizes straightforwardly to the addition of
NARMA processes:

Conjecture
Let x(t) and y(t) be two weakly orthogonal zero mean NARMA(p,q) and

NARMA(m,n) processes, respectively:

ax,t[B,p]x(t) = bx,t[B,q]ex(t)

ay,t[B,m]y(t) = by,t[B,n]ey(t)

where ex(t) and ey(t) are white noise series with variance σx(t)
2 

and σy(t)
2
,

respectively. Let z(t) be the sum of x(t) and y(t): z(t) = x(t) + y(t). Then z(t) is a zero
mean NARMA(r,s) process, where r ≤ p + m and s ≤ max[p + n, q + m]

Proof.
As z(t) = x(t) + y(t), it follows that multiplication of this equality by

ax,t[B,p]ay,t[B,m] yields:

*) ax,t[B,p]ay,t[B,m]z(t) = ay,t[B,m]ax,t[B,p]x(t) + ax,t[B,p]ay,t[B,m]y(t)

But ax,t[B,p]x(t) = bx,t[B,q]ex(t) and ay,t[B,m]y(t) = by,t[B,n]ey(t). Substitution of

the latter equalities in the right-hand side of *) yields:

**) ax,t[B,p]ay,t[B,m]z(t) = ay,t[B,m]bx,t[B,q]ex(t) + ax,t[B,p]by,t[B,n]ey(t)

The order r of the polynomial product ax,t[B,p]ay,t[B,m] in the left-hand side of **) is

not larger than p + m. It can be smaller than p + m in case ax,t[B,p] and ay,t[B,m]

have common roots, which can be removed from ay,t[B,m] before the multiplication

by ax,t[B,p]ay,t[B,m] to arrive at *). Hence r ≤ p + m. The assumption that x(t) and

y(t) are weakly orthogonal implies that the crosscovariance function between ex(t)

and ey(t) is zero at all lags. In the right-hand side of **), the order of

ay,t[B,m]bx,t[B,q] is not larger than q + m (smaller than q + m in case common roots

have been removed from ay,t[B,m]) and the order of ax,t[B,p]by,t[B,n] equals p + n.

Hence the order s of the sum of polynomial products ay,t[B,m]bx,t[B,q] and

ax,t[B,p]by,t[B,n] cannot be larger than the maximum order of the summands: s ≤
max[p + n, q + m].

The proof of the conjecture is the same as the schematic proof of the TGM,
only the time-invariant polynomials occurring in the proof of the TGM have been
replaced by time-varying polynomials in the proof of the conjecture. In fact, the proof
of the conjecture is no longer schematic like the proof of the TGM, because the
technical aspects associated with weak stationarity are not relevant for NARMA
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processes. In this sense the proof of the conjecture is even simpler than the proof of
the TGM.

2.2.3 Addition of NARMA processes in structural equation models

In this section we touch upon a theme that will be discussed more fully in the
next chapter, namely the relationship between time series analysis and standard
structural equation model fitting. In a time series analysis in its barest form, one has
available a single stretch of repeated measurements obtained with a single subject
(system, case). The analysis then proceeds by considering the within-subject
variation, taking the subject fixed and generalizing results across all time points at
which the process under scrutiny is defined. In contrast, in the fit of longitudinal
structural equation models one has available multiple stretches of repeated
measurements replicated over many subjects (systems, cases). The analysis then
proceeds by a consideration of between-subject variation, taking the time points fixed
and generalizing results over the population from which the subjects have been
sampled randomly.

Apart from all kinds of qualifications, statistical estimation in time series
analysis consists of taking averages over time points, whereas estimation in
longitudinal analysis involves taking averages over subjects. I refer to taking averages
over time points as an analysis of within-subject variation, while taking averages over
subjects is referred to as an analysis of between-subject variation. As far as statistical
estimation is concerned, there are no fundamental differences between analyses of
within-subject variation and between-subject variation. Of course there are various
differences having to do with the sequential dependence of terms entering averages
over time points in an analysis of within-subject variation, in comparison with the
measurement independence of terms entering the averages over cases in an analysis of
between-subject variation. But the principles underlying statistical estimation in time
series analysis and signal analysis are the same as the principles underlying
multivariate statistical analysis in general (despite sometimes large differences in
implementation and detail). For further elaborations the reader is referred to the
excellent overview by Wooldridge (1994).

Analyses of within- and between-subject variation not only share the same
principles of statistical estimation theory, but also the same kinds of statistical
models. Brillinger (1975) presents time series analogues of all standard multivariate
statistical models, for instance regression and factor models. Honerkamp (1994) is
another noteworthy source for additional information about this continuity of models
across the two domains concerned. Hence it appears that with respect to statistical
modeling and estimation there are no fundamental differences between analyses of
within- and between-subject variation. In the next chapter I will present various forms
of evidence that there do exist important differences between analyses of between-
and within-subject variation, but these differences have nothing to do with statistical
modeling and estimation proper.

Our observations about the continuity of statistical modeling and estimation
across the domains of within- and between-subject variation indicate that the
prospects of generalizing the TGM and the conjecture about addition of NARMA
models (henceforth referred to as the TGM-C) appear to be good. That is, it would
appear that the applicability of both the TGM and the TGM-C can be generalized
straightforwardly to structural equation models for the analysis of between-subject
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variation. This is indeed the case, as will be argued below. But as an additional
preliminary move it may be helpful to make some additional observations about the
functional role of weak stationarity in time series analysis.

Basic time series analysis is based on the concept of weak stationarity (cf.
Hannan, 1970). When only a single finite realization of a time series is available, the
assumption of weak stationarity provides a rationale for taking averages over time
points in statistical estimation. In this way weak stationarity fulfills the same role in
time series analysis as the assumption of homogeneity in an analysis of between-
subject variation. In the latter kind of analysis, the assumption that subjects are
homogeneous in the relevant respects (i.e., the subjects constitute a homogeneous
population) provides a rationale for taking averages over subjects in statistical
estimation. The concept of weak stationarity has more aspects than just providing a
warrant for taking averages over time points in statistical estimation; it is for instance
related to the notions of stochastic stability (cf. Tong, 1990, chapter 4) and ergodicity
(see next chapter). But here only its licensing role in statistical estimation is
considered. It then follows that nonstationarity will invalidate any simple approach to
statistical estimation by taking averages over time points. Indeed, analysis of
nonstationary time series is a much more delicate affair (cf. Priestley, 1988). When a
single finite realization of a nonstationary time series is available, statistical
estimation only is possible if the time-dependency of parameters is sufficiently
smooth (see the excellent exposition by Dahlhaus, 1997, for further details).

While the latter restriction on the time-dependency of parameters in a
NARMA is mandatory in statistical estimation in time series analysis, no such
restriction is necessary in the context of structural equation modeling. In longitudinal
analysis of between-subject variation, the NARMA(1,0), for instance, is the simplex
model encountered before, defined as

*) at[B,1]yi(t) = yi(t) +, a1,t yi(t-1) = ei(t), t=2,...,T; i=1,2,...

For convenience the initial condition yi(1) = ei(1) has been omitted in *), while the

time-varying coefficient a1,t  corresponds to the notation of (2.11). In *) no

restrictions are imposed on the way in which the coefficient a1,t  depends upon time.

Still, statistical estimation in this simplex model can proceed without problems
because of the assumption of homogeneity underlying the analysis of between-subject
variation concerned. It is assumed that *) applies to each subject i, in particular it is
assumed that the time-varying coefficient is fixed across subjects i, thus allowing for
the possibility to recover any arbitrary sequence of values for a1,t, t = 2, ..., T.

In view of the arguments given above, I conjecture that the TGM-C can be
generalized straightforwardly to NARMA processes occurring in structural equation
models of between-subject variation. This generalized conjecture will be referred to
as GC:

Generalized Conjecture GC
Let xi(t) and yi(t), for each i=1,2,...,  be two weakly orthogonal zero mean

NARMA(p,q) and NARMA(m,n) processes, respectively:

ax,t[B,p]xi(t) = bx,t[B,q]exi(t)
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ay,t[B,m]yi(t) = by,t[B,n]eyi(t)

where exi(t) and eyi(t) are white noise series with variance σx(t)
2 

and σy(t)
2
,

respectively. Let zi(t) be the sum of xi(t) and yi(t): zi(t) = xi(t) + yi(t). Then zi(t) is a

zero mean NARMA(r,s) process, where r ≤ p + m and s ≤ max[p + n, q + m].

Proof.
As for TGM-C for each i=1,2, ...

2.2.4 Transforming the latent simplex into a manifest simplex

In this section a first application of the GC will be given. It will be applied to
the quasi-simplex model, yielding an equivalent representation of this model without
latent variables. In a sense to be specified shortly, application of the GC allows for the
removal of latent variables in the quasi-simplex model. Because it was shown before
that factor models and latent growth curve models are nested under the latent simplex
model, it will be evident that application of the GC to the latter models also allows for
the removal of latent variables. But in this section we focus attention solely on the
quasi-simplex model and defer discussion of factor and latent growth curve models to
the next section.

Let us first recall the definition (2.1) of the quasi-simplex model:

y
i
(t) = η

i
(t) + ε

i
(t), t=1,...,T

(2.1)
η

i
(t) = βt,t-1η

i
(t-1) + ς

i
(t), t=2,...,T; η

i
(1) = ς

i
(1)

where y
i
(t) is a zero mean univariate manifest variable observed at the fixed time

points t=1,2,...,T, ε
i
(t) is zero mean Gaussian white noise measurement error, and ς

i
(t)

is a zero mean white noise innovation process. It is evident that the latent process
ηi(t) is a NARMA(1,0):

aη,t[B,1]ηi(t) = ς
i
(t), t=2,...,T

(2.12)
aη,t[B,1] = 1 + aη,t,1B = 1 - βt,t-1B

where the coefficient aη,t,1 corresponds to the representation given in (2.11) which is

standard in time series analysis, and the coefficient βt,t-1 corresponds to the

representation (2.1) which is standard in structural equation modeling. Such
differences in notation have their own logic and should be endured as contingent facts
without further implications. Of course, aη,t,1 = -βt,t-1.

The first line of (2.1) expresses y
i
(t) as the sum of the  NARMA(1,0) process

η
i
(t) and the white noise measurement error process ε

i
(t): y

i
(t) = η

i
(t) + ε

i
(t). It is
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clear that the measurement error ε
i
(t) is a NARMA(0,0) process that can be vacuously

represented as a special instance of (2.11):

aε,t[B,0]εi(t) = bε,t[B,0]eε(t), t=1,2,...,T,

(2.13)
aε,t[B,0] = bε,t[B,0] = 1

Also, under the usual assumptions about structural equation models, η
i
(t) and ε

i
(t) are

weakly orthogonal. Hence the quasi-simplex model consists of the addition of two
NARMA processes obeying the requirements of the GC, from which it follows that
y
i
(t) also is a NARMA process.

y
i
(t) = NARMA(1,0) + NARMA(0,0) = NARMA(r,s)

where r ≤ 1 + 0 and s ≤ max[1 + 0, 0 + 0]. Because there are no common roots, it
follows that y

i
(t) is a NARMA(1,1) process:

(2.14) ay,t[B,1]yi(t) = by,t[B,1]eyi(t)

Let’s pause here and try to evaluate what has been accomplished thus far. We
started with the standard quasi-simplex model given by (2.1). In this quasi-simplex
model there are at least three different kinds of random variable at each time point t:
the manifest variable yi(t), the latent factor ηi(t), and the measurement error εi(t).

Perhaps the latent innovation ς
i
(t) should be added as a fourth kind of random

variable. This standard quasi-simplex model involving these four different kinds of
random variable, each with their own interpretation, has been rewritten as a
NARMA(1,1) given by (2.14). In this NARMA there are at each time point t only two
kinds of random variable: the manifest variable yi(t) and a new innovation variable

eyi(t). It follows from the GC that (2.1) and (2.14) are equivalent. This will be

illustrated later on in this section by means of a numerical example. Consequently we
have two representations of the same structural equation model: one involving four
types of random variable and one involving only two types of random variable. In the
transformation from (2.1) to (2.14) which, as I will show shortly, is a one-to-one
transformation (and hence invertible), two types of random variable have been
removed. The latent factor ηi(t) and the latent innovation ς

i
(t) no longer occur in

(2.14). Loosely speaking, the latent factor and innovation have been removed from
the quasi-simplex without affecting its explanatory power. In the next section I will
indicate some important implications of this result.

Proceeding with the main line of argument, we now face the task of
elaborating the details of the transformation from (2.1) to (2.14). First, a simple
numerical example will be given using a weakly stationary quasi-simplex model. The
simplicity of this example will convey the details of the transformation concerned as
transparently as possible. Then we move on to the elucidation of arbitrary
nonstationary quasi-simplex models, again using a numerical example as stepping
stone.
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Consider the following weakly stationary quasi-simplex model:

y
i
(t) = η

i
(t) + ε

i
(t), t=1,...,5

η
i
(t) =.8η

i
(t-1) + ς

i
(t), t=2,...,5; η

i
(1) = ς

i
(1)

(2.15) var[ε
i
(t)] = 1, t=1,...,5

var[ς
i
(t)] = 1, t=2,...,5

var[ς
i
(1)] = 2.778

Both the measurement error ε
i
(t) and the latent innovations ς

i
(t) are zero mean white

noise processes and hence lack any sequential dependency. The autoregressive
coefficient is invariant across time points: βt,t-1 = .8, t=2,...,5. Also the variance of

ε
i
(t) and the variance of the latent innovations are invariant in time. The only

exception is the variance of the latent innovation at the initial time point. The vacuous
equation η

i
(1) = ς

i
(1) implies that ς

i
(1) is not a genuine innovation, but is equal to the

latent factor at the initial time point. Hence it should have the variance of the latent
factor process. As explained in chapter 1, the variance of this weakly stationary first-

order autoregressive factor process equals: var[η
i
(t)] = var[ς

i
(t)] / (1 - .8

2
) = 2.778.

The true covariance matrix associated with this model is:

        y y y y y

y

y

y

y

y

( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

.

. .

. . .

. . . .

. . . . .

1 2 3 4 5

1

2

3

4

5

3 78

2 22 3 78

1 78 2 22 3 78

1 42 1 78 2 22 3 78

1 14 1 42 1 78 2 22 3 78

























According to the GC, this covariance matrix can also be explained by a
weakly stationary ARMA(1,1). There are various ways in which this ARMA model
can be represented as a structural equation model. In the final part of this chapter this
issue will be discussed in more detail. Presently I will specify one particular
implementation as a structural equation model of the weakly stationary ARMA(1,1)
for T=5 time points. In the notation of (2.14) we have the following set of equations:

(2.16
a
) yi(t) + ay,1yi(t-1) = ey,1(t) + by,1ey,1(t-1), t=2,...,5

yi(1) + ay,1yi(0) = ey,1(1) + by,1ey,i(0)

As usual in this type of modeling, difficulties arise concerning the handling of the
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initial condition(s). The equation for t=1 contains yi(0), which is not available. This

can be accommodated in a formal sense by moving the term ay,1yi(0) to the right-

hand side of the equation:

(2.16
b
) yi(1) = ey,1(1) + by,1ey,i(0) - ay,1yi(0) = ey,1(1) + b

$
e
$
i(0)

where b
$
e
$
i(0) = by,1ey,i(0) - ay,1yi(0). Note that ey,i(0) and yi(0) are mutually

independent under the usual assumptions for ARMA (and structural equation)
models.

The equations (2.16
a
) and (2.16

b
) can be implemented as a regular structural

equation model in the following way. Let yi = [yi(1), ..., yi(5)]’ be the 5-dimensional

vector of manifest variables. Let I5 be the (5,5)-dimensional unit matrix and 05,6 the
(5,6)-dimensional zero matrix. Then

yi = ΛΛΛΛηηηηi

where the (5,11)-dimensional matrix ΛΛΛΛ is defined as ΛΛΛΛ = [I5, 05,6]. Note that the first
five elements of the 11-dimensional vector ηηηη i equal yi (there is no measurement error

ε
i
). The remaining six elements of ηηηη i are, respectively, e

$
i(0) and ey,i(t), t=1,...,5:

ηηηηi = [yi(1),..., yi(5), e
$
i(0), ey,i(1), ..., ey,i(5)]’

Hence (2.16
a
) and (2.16

b
) can be written as the following structural equation model:

η1,i = η7,i + β1,6η6,i

η2,i = β2,1η1,i + η8,i + β2,7η7,i

η3,i = β3,2η2,i + η9,i  + β3,8η8,i
(2.17)

η4,i  = β4,3η3,i + η10,i  + β4,9η9,i

η5,i  = β5,4η4,i  + η11,i + β5,10η10,i

ηk,i   = ς
k,i

, k = 6,...,11

where

β2,1 = β3,2 = β4,3 = β5,4

. β2,7 = β3,8 = β4,9 = β5,10
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var[ς
k,i

] is invariant over k=6,...,11

Not surprisingly, this structural equation model representing a weakly
stationary ARMA(1,1) yields an exact fit to the covariance matrix associated with the

weakly stationary quasi-simplex presented above. Using the notation of (2.16
a
) and

(2.16
b
), the parameter values thus recovered are: ay,1 = -.8, by,1 = -.34, b

$ 
= .77,

var[ey,i(t)] = 2.37, t=0,...,5.

How are the parameter values in the weakly stationary ARMA(1,1) related to
those in the weakly stationary quasi-simplex? Following Granger & Morris (1976)
this can be explained as follows. For the moment neglect initial conditions and
consider the first equation in the (weakly stationary instance of the) quasi-simplex
model (2.1): y

i
(t) = η

i
(t) + ε

i
(t). Premultiply this equation by aη[B,1] obtained from

the weakly stationary case of (2.12), yielding:

 aη[B,1]y
i
(t) = aη[B,1]η

i
(t) + aη[B,1]ε

i
(t).

But (2.12), interpreted in the weakly stationary sense, specifies that aη[B,1]ηi(t) =

ς
i
(t). Consequently:

(2.18
a
) aη[B,1]y

i
(t) = ς

i
(t) + aη[B,1]ε

i
(t).

On the other hand, (2.14) specifies that (again neglecting the initial conditions and
taking the special case of weak stationarity):

(2.18
b
) ay[B,1]yi(t) = by[B,1]ey,i(t)

We now have two representations of what is supposed to be the same process y
i
(t),

one given by (2.18
a
) and one given by (2.18

b
) (note that (2.18

b
) is another way of

writing (2.16
a
), used to make the comparison between the two representations of y

i
(t)

more transparent qua notation). Hence the left-hand sides of (2.18
a
) and (2.18

b
)

should be equal, and also the right-hand sides of these two representations should be
equal.

The equality of the left-hand sides of (2.18
a
) and (2.18

b
) is immediately

obtained by taking aη,1 = ay,1. Hence the autoregressive coefficient aη,1 =  -βt,t-1,

t=2,...,5, in the weakly stationary quasi-simplex (2.15) should equal the autoregressive

coefficient ay,1  = -βk,k-1, k=2,...,5, in the ARMA(1,1) given by (2.16
a
)-(2.17). In

the quasi-simplex (2.15) underlying the covariance matrix given above, we took βt,t-1
= .8, t=2,...,5, while in fitting the ARMA(1,1) given by (2.17) to this covariance
matrix we obtained ay,1  = -.8 = -βk,k-1, k=2,...,5. Hence in our numerical example
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the left-hand sides of (2.18
a
) and (2.18

b
) indeed agree.

The right-hand sides of (2.18
a
) and (2.18

b
) cannot be equated directly.

Following Granger & Morris (1976), we instead equate the autocovariances up to lag
1 associated with the right-hand sides concerned (hence these right-hand sides are
considered in themselves). First we write out the expressions more explicitly:

RHS-(2.18
a
): ς

i
(t) + ε

i
(t) + aη,1ε

i
(t-1)

RHS-(2.18
b
): eyi(t) + by,1ey,i(t-1)

It is noted that ς
i
(t), ε

i
(t) in RHS-(2.18

a
) are zero mean white noise processes that are

weakly orthogonal. It also is noted that eyi(t) in RHS-(2.18
b
) is a zero mean white

noise process. Hence the variances, i.e., autocovariances at lag zero, denoted by
ACV(0), are:

ACV(0) RHS-(2.18
a
):var[ς

i
(t)] + {1 + (aη,1)

2
}var[ε

i
(t)]

ACV(0) RHS-(2.18
b
): {1 + (by,1)2}var[eyi(t)]

The autocovariances at lag one, denoted by ACV(1) are:

ACV(1) RHS-(2.18
a
):aη,1var[ε

i
(t)]

ACV(1) RHS-(2.18
b
): by,1var[eyi(t)]

This completes the specification of the mapping between a weakly stationary
quasi-simplex and a weakly stationary ARMA(1,1). Let’s apply it to our numerical
example. The covariance matrix given above has been generated according to the
weakly stationary quasi-simplex (2.15) in which var[ε

i
(t)] = 1, aη,1 = -.8, and

var[ς
i
(t)] = 1. We now want to derive from this information the parameter values in

the ARMA(1,1) corresponding to (2.15). We therefore consider the parameter values
in (2.15) as given. Remember that we already determined from the equality of the

left-hand sides of (2.18
a
) and (2.18

b
) that ay,1  = aη,1 = -.8. Substitution of the

parameter values of (2.15) in ACV(u) RHS-(2.18
a
), u=0,1, and equating the value

thus obtained to ACV(u) RHS-(2.18
b
), u=0,1, yields:

2.64 = {1 + (by,1)2}var[eyi(t)]
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-.80 = by,1var[eyi(t)]

The two unknowns, by,1 and var[eyi(t)], can be obtained from these two equations:

by,1 = -.34 and var[eyi(t)] = 2.37. These are exactly the values for ay,1, by,1, and

var[eyi(t)] obtained in fitting (2.17) to the covariance matrix associated with (2.15).

Of course, one can also proceed in the reverse direction and consider the
parameter values in the ARMA(1,1) (2.17) as given. Then the parameter values in the
quasi-simplex (2.15) can be determined in a similar vein by using the same mapping
rules the other way around. In fact, this is the way in which Granger & Morris (1976)
discuss this mapping in order to answer their question: “Can ARMA(1,1) = AR(1) +
white noise?”. This is certainly not a trivial question, because the class of weakly
stationary ARMA(1,1) models is strictly larger than the class of weakly stationary
quasi-simplex models. I will address this important issue and some of its implications
later on. For the moment it is noted that our main interest is in transforming quasi-
simplex models to (N)ARMA models. Only for this particular subset of (N)ARMA
models the inverse transformation is presently of interest.

Having the relationship between the weakly stationary quasi-simplex and the
weakly stationary ARMA(1,1) in place, it is a relatively simple exercise to extend this
to the specification of the mapping between general (nonstationary) quasi-simplex
models and NARMA(1,1) models. In doing so, we will see the workings of the GC in
full force. Unfortunately,  the intricacies associated with initial conditions will present
themselves in the same manner. The basic structure of the set of rules linking the
weakly stationary quasi-simplex and ARMA(1,1), however, is not affected and carries
over directly to the nonstationary case. Again I will start with a numerical example
for the sake of concreteness.

Consider the following (nonstationary) quasi-simplex model:

y
i
(t) = η

i
(t) + ε

i
(t), t=1,...,5

η
i
(t) =.βt,t-1η

i
(t-1) + ς

i
(t), t=2,...,5; η

i
(1) = ς

i
(1)

β2,1 = .8, β3,2 = .9, β4,3 = 1.0, β5,4 = 1.1

var[ε
i
(1)] = var[ε

i
(2)] = 1

(2.19)
var[ε

i
(3)] = 2

var[ε
i
(4)] = var[ε

i
(5)] = 3

var[ς
i
(1)] = 5, var[ς

i
(2)] = 1, var[ς

i
(3)] = 2,

var[ς
i
(4)] = 3, var[ς

i
(5)] = 4

It is noted that (2.19) is nonstationary in almost all the respects which were
considered in section 2.2.2. The autoregression coefficients βt,t-1  are time-varying.
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Also the variances of ε
i
(t) and ς

i
(t) are time-varying. Only the order of the

autoregression describing the η
i
(t) process is constant. The variances of ε

i
(t) at time

points t=1,2 are equal: var[ε
i
(1)] = var[ε

i
(2)] = 1. The same equality restriction has

been imposed on the variances of ε
i
(t) at time points t=4,5: var[ε

i
(4)] = var[ε

i
(5)] = 3.

These two equality restrictions do not restrict the generality of (2.19) and could have
been omitted. But it is well-known that in the general quasi-simplex model the
variances of ε

i
(t) at the initial and final time points are not identifiable. Hence the

equality restrictions concerned (or alternative restrictions guaranteeing identifiability)
have to be imposed anyway a posteriori, as soon as it comes to model fitting, and then
will affect the scaling of the remaining parameter values thus recovered. By using the
equality restrictions a priori in generating the true covariance matrix, the parameter
values given in (2.19) and those obtained in subsequent model fits will be directly
comparable, without the need to rescale.

The true covariance matrix associated with (2.19) is:

        y y y y y

y

y

y

y

y

( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

.

. .

. . .

. . . .

. . . . .

1 2 3 4 5

1

2

3

4

5

6 00

4 00 5 20

3 60 3 78 7 40

3 60 3 78 5 40 11 40

3 96 4 16 5 94 9 24 17 17

























According to the GC, this covariance matrix can also be explained by a
NARMA(1,1). I will specify one particular implementation as a structural equation
model of this NARMA(1,1) for T=5 time points. In the notation of (2.14) we have the
following set of equations for time points t=4 and t=5:

(2.20
a
)  yi(t) + ay.t,1yi(t-1) = ey,i(t) + by,,t,1ey,i(t-1), t=4,5

The difficulties arising from the handling of initial conditions are more involved for
the NARMA(1,1) than for the weakly stationary ARMA(1,1) given by (2.16). For the
latter weakly stationary ARMA(1,1) it was possible to utilize the time-invariance of
model parameters in order to keep the effects of the initial conditions limited to the
first time point t=1. In particular the assumed constancy of var[ey,i(t)] in (2.16) made

it possible to keep the model equation at time points t=2 and t=3 out of the reach of
the initial conditions. For the NARMA(1,1) we have to accept that at time points t=1,
t=2 and t=3 the initial conditions complicate the possibility to recover all the
parameter values that follow from the GC.

At time point t=1 it is no longer possible in the equation for yi(1) to

distinguish between ey,i(1) and ey,i(0) because the variances of these variables are

arbitrary. Consequently, the equation for yi(1), which according to the NARMA(1,1)

would be yi(1) + ay,1,1yi(0) = ey,i(1) + by,1,1ey,i(0), reduces to:
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(2.20
b
) yi(1) = e

$
i(1)

At time point t=2 it has to be recognized that in the NARMA(1,1) equation yi(2) +

ay,2,1yi(1) = ey,i(2) + by,2,1ey,i(1) the term by,2,1ey,i(1) is not identified because

ey,i(1) is not available (only e
$
i(1) is available). Because by,2,1ey,i(1) constitutes

part of the description of the relationship between yi(1) and yi(2), the fact that this

term is not identified also affects the coefficient ay,2,1. Hence at t=2 the following

reduced equation for yi(2) is obtained:

(2.20
c
) yi(2) + a

$
yi(1) = e

$
i(2)

Finally at time point t=3, only the coefficient by,3,1 in the NARMA(1,1) equation

yi(3) + ay,3,1yi(2) = ey,1(3) + by,3,1ey,i(2) is affected by the initial conditions

because ey,i(2) is not available (only e
$
i(2) is available). This leads to the reduced

equation:

(2.20
d
) yi(3) + ay,3,1yi(2) = ey,i(3) + b

$
e
$
i(2)

The equations (2.20
a
)-(2.20

d
) can be implemented as a regular structural

equation model in the following way. Let yi = [yi(1), ..., yi(5)]’ be the 5-dimensional

vector of manifest variables. Let I5 be the (5,5)-dimensional unit matrix and 05 the
(5,5)-dimensional zero matrix. Then

yi = ΛΛΛΛηηηηi

where the (5,10)-dimensional matrix ΛΛΛΛ is defined as ΛΛΛΛ = [I5, 05]. The 10-dimensional
vector ηηηη i is defined as:

ηηηηi = [yi(1),..., yi(5), e
$
i(1), e

$
i(2), ey,i(3), ey,i(4), ey,i(5)]’

The equations (2.20
a
)-(2.20

d
) can now be expanded as:

η1,i = η6,i

η2,i = β2,1η1,i + η7,i

η3,i = β3,2η2,i + η8,i  + β3,7η7,i
(2.21)

η4,i  = β4,3η3,i + η9,i  + β4,8η8,i

η5,i  = β5,4η4,i  + η10,i + β5,9η9,i
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ηk,i   = ς
k,i

, k = 6,...,10

The fit of (2.21) to the covariance matrix associated with the quasi-simplex
model (2.19) is exact. It also has the same number of free parameters as the quasi-
simplex model. The obtained values of the autoregressive parameter values in both

the notation of (2.20
a
)-(2.20

d
) and (2.21) are: a

$ 
= -β2,1 = -.67, ay,3,1 = -β3,2 = -.90,

ay,4,1 = -β4,3 = -1.0, ay,5,1 = -β5,4 = -1.1. The obtained values of the moving-

average parameters, given in both notations, are: b
$
 = β3,7 = -.36, by,4,1 = β4,8 = -

.45, by,5,1 = β5,9 = -.46. Finally, the variances of the innovations are, again

expressed in both notations: var[e
$
i(1)] = var[ς

6,i
] = 6.0, var[e

$
i(2)] = var[ς

7,i
] =

2.53, var[ey,i(3)] = var[ς
8,i

] = 4.49, var[ey,i(4)] = var[ς
9,i

] = 7.11, var[ey,i(5)] =

var[ς
10,i

] = 9.10.

We now have obtained two models and their parameter values for the same
process yi(t), t=1,...,5, namely the nonstationary quasi-simplex (2.19) and the

NARMA(1,1) given by (2.20
a
)-(2.20

d
). For those parameters in the NARMA(1,1)

that are not affected by the initial conditions, the mapping rules associated with the
GC apply. These rules are the same as given before for the weakly stationary
ARMA(1,1) model, but should be applied at each time point separately for the
NARMA(1,1). I will not go through all the detailed steps again, because these have
already been amply discussed, but instead concentrate on the computational aspects.

Neglecting initial conditions and their effects, the two models concerned are
the nonstationary quasi-simplex (obtained by premultiplying (2.19), y

i
(t) = η i(t) +

ε
i
(t), by a

η,t
[B,1] and making use of a

η,t
[B,1]η i(t) = ς

i
(t)):

(2.22
a
) aη,t[B,1]y

i
(t) = ς

i
(t) + aη,t[B,1]ε

i
(t)

and the NARMA(1,1)

(2.22
b
) ay,t[B,1]yi(t) = by,t[B,1]ey,i(t).

The autoregressive polynomials aη,t[B,1] and ay,t[B,1] at the left-hand sides of

(2.22
a
) and (2.22

b
) should be equal to each other at time points t=3,4,5. This follows

from the GC and (2.20
a
)-(2.20

d
). The autoregressive parameter values at these time

points in the nonstationary quasi-simplex (2.19) are: -β3,2 = aη,3,1 = -.9, -β4,3 =

aη,4,1 = -1.0, -β5,4 = aη,5,1 = -1.1. The corresponding autoregressive parameter

values in the NARMA(1,1), obtained from the fit of (2.21), are indeed the same at the
time points concerned: ay,3,1 = -.9, ay,4,1 = -1.0, ay,5,1 = -1.1.

To establish the equality of the moving-average polynomials at right-hand
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sides of (2.22
a
) and (2.22

b
), it is helpful to write out the expressions at the time points

t=4,5:

RHS-(2.22
a
): ς

i
(t) + ε

i
(t) + aη,t,1ε

i
(t-1), t=4,5

RHS-(2.22
b
): eyi(t) + by,t,1ey,i(t-1), t=4,5

It is noted that ς
i
(t), ε

i
(t) in RHS-(2.22

a
) are zero mean white noise processes that are

weakly orthogonal. Also eyi(t) in RHS-(2.22
b
) is a zero mean white noise process.

The autovariances at time points t=4,5, denoted by ACV(t,t) are:

ACV(t,t) RHS-(2.22
a
): var[ς

i
(t)] + var[ε

i
(t)] + (aη,t,1)

2
var[ε

i
(t-1)]

ACV(t,t) RHS-(2.22
b
): var[eyi(t)] + (by,t,1)

2
var[eyi(t-1)]

The autocovariances between time points t and t-1, t=4,5, are denoted by ACV(t,t-1):

ACV(t,t-1) RHS-(2.22
a
): aη,t,1var[ε

i
(t-1)]

ACV(t,t-1) RHS-(2.22
b
): by,t,1var[eyi(t-1)]

It is immediately clear that the number of equations for the auto(co-)variances

of the right-hand sides of (2.22
a
) and (2.22

b
) associated with the time points t=4,5 is

one less than the number of free parameters in these equations. With respect to the

right-hand side of the nonstationary quasi-simplex (2.22
a
) at these two time points

there are a total of four equations for the auto(co-)variances: ACV(4,3), ACV(4,4),
ACV(5,4) and ACV(5,5). These four equations have five free parameters: var[ε

i
(3)],

var[ε
i
(4)], var[ε

i
(5)], var[ς

i
(4)] and var[ς

i
(5)]. A similar count can be made for the

right-hand side of the NARMA(1,1) at time points t=4,5, showing again that there are
available four equations for the auto(co-variances) involving five free parameters.
The only way to uniquely specify the equalities between the right-hand sides of

(2.22
a
) and (2.22

b
) is to start at the initial time point t=1 and work our way up to the

time points of interest, t=4,5 where the GC applies. This is always possible because in
the present context of structural equation models for longitudinal analysis, the number
of (fixed) time points under consideration is finite. In what follows I will not describe
this march from t=1 to t=5 in full generality, but instead sketch the numerical

computations associated with mapping the quasi-simplex given by (2.19) and (2.22
a
)

to the NARMA(1,1) given by (2.20) and (2.22
b
). The inverse mapping (from
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NARMA to quasi-simplex) should then be evident and is not considered in order to
avoid too much repetition and its consequent boredom.

At time points t=1,2 the GC does not apply and therefore no mapping rules
between the quasi-simplex and NARMA(1,1) are specified. We can within the
context of each model simply march from t=1 onwards without considering the
relationships with the other model. Because I want to illustrate the application of the
GC with respect to the mapping  from quasi-simplex to NARMA, only the start-up for
the NARMA model is presented. For time point t=1 the relevant NARMA(1,1)

equation is given by (2.20
b
): yi(1) = e

$
i(1).

Hence var[e
$
i(1)] = var[y

i
(1)] = 6. For time point t=2 we have according to (2.20

c
):

yi(2) + a
$
yi(1) = e

$
i(2). Because cov[yi(2), yi(1)] = 4 = -a

$
var[yi(1)], it follows that

a
$ 

= -4/6 = -.67. We also have that var[yi(2)] = 5.2 = (-a
$
)
2
var[yi(1)] + var[e

$
i(2)],

whence var[e
$
i(2)] = 2.53. Until now we have recovered the parameter values as

obtained from the fit of (2.21).
At time point t=3 there is the first encounter with the GC as it is applied to the

left-hand sides of (2.22
a
) and (2.22

b
):

*) y i(3) + aη,3,1yi
(2) = ς

i
(3) + ε

i
(3) + aη,3,1εi

(2)

**) y i(3) + ay,3,1yi(2) = ey,i(3) + b
$
e
$
i(2)

The GC stipulates that aη,3,1 = -.9 = ay,3,1. Because we are still marching within

the context of the NARMA, we proceed as before under the condition that ay,3,1 = -

.9. From **) it follows that cov[yi(3), yi(2)] = 3.78 = .9var[yi(2)] + b
$
var[e

$
i(2)],

yielding b
$ 

= -.36. Finally, from var[yi(3)] = 7.4 = .9
2
var[yi(2)] + 1.8 b

$
var[e

$
i(2)] +

var[ey,i(3)] + (b
$
)
2
var[e

$
i(2)], yielding var[e

$
i(3)] = 4.49. This latter parameter

value, var[e
$
i(3)] = 4.49, provides for the missing bit of information in the execution

of the mapping rules associated with the GC. Again, the parameter values recovered
up to the present time point t=3 in out march agree exactly with the ones obtained
from the fit of (2.21).

We next move to the time point t=4 and apply the mapping rules associated
with the GC in exactly the same way as has been described earlier for the relationship
between the weakly stationary quasi-simplex and the ARMA(1,1). At t=4 the left-

hand sides of (2.22
a
) and (2.22

b
), describing the autoregressive parts of each model,

are equated in the usual way. Equating the right-hand sides at t=4 involves

comparison of ACV(4,4) RHS-(2.22
a
) with ACV(4,4) RHS-(2.22

b
) and comparison

of ACV(4,3) RHS-(2.22
a
) with ACV(4,3) RHS-(2.22

b
). The parametric expressions

for these auto(co-)variances have been specified above. As far as the NARMA(1.1) is
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concerned (remember that we consider the mapping from quasi-simplex to NARMA),
this comparison involves two equations containing two free parameters: var[eyi(4)]

and by,4,1. The remaining parameter in the expressions concerned, var[eyi(t-1)], is

now known from the previous step in our march. Hence all parameters of the
NARMA(1,1) at t=4 can be determined from the parameter values in the quasi-
simplex. The latter conclusion immediately generalizes to time point t=5 (and to any
additional subsequent time points in general).

At the close of this section I would like to stress that we have accomplished
something that to the best of my knowledge has not been achieved before in the broad
field of structural equation modeling. It has been shown in detail that the quasi-
simplex, i.e., the latent univariate simplex, is equivalent to a NARMA(1,1). The
quasi-simplex is composed of a latent factor process and measurement error, while
the NARMA(1,1) lacks such a latent factor process. Hence we have rewritten a
structural equation model involving common latent variables as a model involving
only manifest variables. In this sense, we have “removed the common latent variables
from a structural equation model”. This accomplishment has interesting implications
for ongoing deliberations about “the status of latent random variables in general, and
common factors in particular”. Some of these implications will be addressed in the
next section. Presently it should be recognized that there are also ambiguities
associated with the proper denotation of the construct “latent random variable”. The
factor process η

i
(t) occurring in the quasi-simplex model is a latent random process.

But strictly speaking the innovations process eyi(t) occurring in the NARMA model

also is a latent process. The latter eyi(t) process is akin to the residuals in a standard

regression model, and in the context of regular regression analysis it does not appear
to be customary to emphasize that the residuals are latent variables. There would
seem to be some kind of  difference between a common factor and a regression
residual, despite that both have to be considered as latent random variables. But as far
as I know, a complete and satisfactory specification of this difference (if any) is not
yet available.

2.2.5 Removing the factor from a factor model

During the period of my assignment at the Pennsylvania State University, I
received one day an honorable invitation to present a lecture at the Statistics
Department headed by the eminent C.R. Rao. The lecture was very well attended by
members of the department and afterwards most of us, including CR himself, engaged
in lively discussion and good food. There was one particular topic of discussion I
remember most vividly. It concerned what can be loosely described as “the status of
common factors and other latent variables”. It was explained to me in various ways
that many mathematical statisticians have doubts about the appropriateness of models
involving common latent factors. After having listened to the arguments presented to
me, I asked who would return home afterwards by car. Many gave an affirmative
answer. I then asked whether anybody  would not trust the workings of their cars
while driving home. There was nobody present who expressed ontological doubts
about the robustness of cars. I then indicated that important aspects of the workings of
modern cars are controlled by so-called adaptive state controllers, where the states
concerned are latent factors. Hence my final, rhetorical, question was, how intelligent
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scientists could have doubts about the appropriateness of latent variables on the one
hand, and yet would trust vital process control based on the same kind of latent
variables on the other hand. Maybe a new state of mind was born in the minds in the
population of mathematical statisticians, that day in Pennsylvania. A state of mind for
which they helped create themselves many formal tools, while being unconscious of
some of its implications (barring active repression in some Freudian sense). I felt like
a real psychologist amidst mathematicians.

The contents of the present section also have a bearing on issues related with
the status of common factors, but the approach is not the dialectical one recounted
above. It will be shown that models with latent common factors can be rewritten as
models  in which these latent factors no longer occur. The tool to accomplish the
removal of latent factors from a factor model is again the GC. First a factor model is
reformulated as a restricted latent simplex model in the way explained earlier in this
chapter. Then the GC is applied to this restricted latent simplex, yielding a
NARMA(1,1) that is equivalent to the restricted latent simplex, and hence to the
original factor model, but that does no longer contain latent factors. This preview may
indicate that the discussion in the present section does not introduce any new
formalities, but instead involves a further application of the results obtained in earlier
sections. The factor model deserves special treatment because, for better for worse, it
has an intimate and long-standing relationship with psychology. It will be shown, to
the best of my knowledge for the first time, how this factor model can be stripped of
its essential ingredients and turned into a model involving only manifest variables and
residuals.

We start again with a numerical example and for this the 1-factor model
considered in section 2.1.2 is taken. Let yi = [y1i, y2i, y3i, y4i]’ be the 4-dimensional

vector of manifest variables and consider the 1-factor model

yi = λλλληi + εεεεi

λλλλ ‘ = [1, 1, 2, 1]
a)

cov[εεεεi, εεεεi’] = diag[1, 2, 3, 4]

var[ηi] = 1

The true covariance matrix associated with model a) has been given in section 2.1.2
and is repeated below:
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It also has been explained in section 2.1.2 that this 1-factor model is equivalent to the
following restricted quasi-simplex model:
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y
i
(t) = η

i
(t) + ε

i
(t), t=1,...,4

var[η_] = 1

b)
η

i
(t) = βt,t-1η

i
(t-1), t=2,3,4

β21 = 1, β32 = 2, β43 = .5

Neglecting initial conditions and their effects (hence for t larger than τ, where
the minimum value of τ will be determined shortly), the latter restricted quasi-simplex
b) can (after premultiplication by a

η,t
[B,1], etc.) be written as:

*) aη,t[B,1]y
i
(t) = aη,t[B,1]ε

i
(t), t > τ ,

where aη,t[B,1] = (1 - βt,t-1B). According to the GC, the nonstationary quasi-

simplex *) is equivalent to the NARMA(1,1)

**) ay,t[B,1]yi(t) = by,t[B,1]ey,i(t), t > τ

Note that *) differs from (2.22
a
) in the previous section in one important respect:

there is no longer a latent innovations process ς
i
(t) occurring at the right-hand side of

*). This implies that *) and **) can be equated simply by taking aη,t[B,1] = ay,t[B,1]

and aη,t[B,1] = by,t[B,1]. Hence in **) the autoregressive polynomial ay,t[B,1] is

equal to the moving-average polynomial by,t[B,1], and both polynomials are equal to

aη,t[B,1] in *). It may look as if *) could be reduced to y
i
(t) = ε

i
(t) by dividing out the

common polynomial, and **) could be similarly reduced to yi(t) = ey,i(t). This is not

allowed, however, due to the effects of initial conditions on the restricted quasi-
simplex and the NARMA(1,1). As will be explained below, these differences in initial
conditions are inherited at later time points, making the reductions under
consideration invalid.

But let us first pause for a moment and consider *) and **). It then is noted
that both have exactly the same NARMA(1,1) structure: for t > τ the expression *) for
the restricted quasi-simplex model is, apart from irrelevant notational differences,
exactly the same as the expression **) for the NARMA(1,1). Both *) and **) simply
are the same NARMA(1,1) expressions for t > τ. Consequently it is expected that the
ey,i(t) process in the NARMA(1,1) **) will be the same (in some appropriate

stochastic sense) as the measurement error process ε
i
(t) in the restricted quasi-simplex

*). It also is noted that **) has the same form as (2.22
b
) considered in the previous

section in the context of rewriting the general quasi-simplex as NARMA(1,1). It was
shown in that section that the effect of initial conditions on the moving-average

polynomial at the right-hand side of (2.22
b
) were still noticeable at time point t=3.

Hence τ = 3 with respect to the right-hand side of (2.22
b
).
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With these preliminary observations in hand, we proceed by writing out the
NARMA(1,1) associated with the restricted quasi-simplex for each time point

t=1,...,4. To start with, the steps in the discussion following (2.22
b
) (where τ = 3 for

the right-hand side of the NARMA associated with the general quasi-simplex) are
repeated, yielding

yi(1) = e
$
i(1)

yi(2) + ay,2,1yi(1) = e
$
i(2)

yi(3) + ay,3,1yi(2) = ey,i(3) + b
$
e
$
i(2)

yi(4) + ay,4,1yi(3) = ey,i(4) + ay,4,1ey,i(3)

For time point t=4 the restriction that the autoregressive polynomial in B equals the
moving-average polynomial in B is obeyed. For t=3 this restriction has not yet been

expressed in the right-hand side. The problem is that only e
$
i(2) is available from the

antecedent time point t=2, not ey,i(2) which is needed to express the restriction.

Turning our attention to t=2, suppose that we substitute e
$
i(2) = ey,i(2) + e

#
i(2),

yielding yi(2) + a
$
yi(1) = ey,i(2) + e

#
i(2), where a

$ 
 has to be substituted for ay,2,1

because of the addition of ey,i(2). It then no longer holds that ay,2,1  in **) equals
aη,2,1 in *). However, it now is possible to express the restriction about the equality

of autoregressive and moving-average polynomial at t=3: yi(3) + ay,3,1yi(2) = ey,i(3)

+ ay,3,1ey,i(2). The complete set of equations for the NARMA(1,1) equivalent of the

restricted quasi-simplex then becomes:

yi(1) = e
$
i(1)

yi(2) + a
$
yi(1) = ey,i(2) + e

#
i(2)

c)
yi(3) + ay,3,1yi(2) = ey,i(3) + ay,3,1ey,i(2)

yi(4) + ay,4,1yi(3) = ey,i(4) + ay,4,1ey,i(3)

Of course, the artificial residual variable e
#
i(2) is uncorrelated with the remaining

residual variables. In particular, cov[e
#
i(2), ey,i(2)] = 0. Note that we have thus

reduced the value of τ for the right-hand side of **) from τ = 3 to τ = 2. This
procedure to reduce τ to τ = 2 always works, irrespective of the total number T of
time points at which the analysis is carried out.
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The fit of c) to the true covariance matrix associated with the 1-factor model
a) is exact. Model c), which is the NARMA(1,1)-equivalent of the 1-factor model, has
the same number of free parameters as the 1-factor model a) and the restricted quasi-

simplex b). The parameter values obtained in the fit of c) are: a
$ 

= -.50, ay,3,1 = -2.0,

ay,2,1 = -.50, var[e
$
i(1)] = 2.0, var[e

#
i(2)] = .50, var[ey,i(2)] = 2.0, var[ey,i(3)] = 3.0,

and var[ey,i(4)] = 4.0.

It is noted that in model c), for t > 2, the autoregressive polynomials in the
left-hand side of the NARMA(1,1) are equal to moving-average polynomials in the
right-hand side. The coefficients in these polynomials are equal to the autoregressive
coefficients in the restricted quasi-simplex equivalent of the 1-factor model described
in section 2.1.2. Furthermore, it is noted that for t > 1 the residual process ey,i(t) in

this NARMA is in a distributional sense the same as the measurement error process
ε
i
(t), i.e., both processes have the same 3-variate Gaussian distribution. Consequently,

**) can be expressed more specifically as:

yi(1) = e
$
i(1)

(2.23) yi(2) + a
$
yi(1) = εi(2) + e

#
i(2)

ay,t[B,1]yi(t) = ay,t[B,1]ε
i
(t), t > 2, ...,T

It therefore can be concluded that for arbitrary T the 1-factor model can be rewritten
as a NARMA(1,1) expressed as (2.23). The common factor ηi no longer occurs in

(2.23), only the manifest variables yi(t) and (for t > 2) the measurement errors ε
i
(t). In

addition two residuals occur at t=1 and t=2, respectively. The common factor ηi has

been removed from the 1-factor model by expressing it in the form (2.23).
There remains one final point that has to be worked out yet. Namely the

handling of initial conditions within the present context. For the restricted NARMA
we have:

yi(1) = e
$
i(1)

yi(2) + a
$
yi(1) = εi(2) + e

#
i(2)

whereas for the restricted quasi-simplex we have:

yi(1) = η1 + εi(1)

yi(2) + aη,1,1η1 = εi(2)

These two sets of equations should yield expressions for variances and covariance of
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yi(t), t=1,2, which have equal values. At t=1 this implies var[yi(1)] = var[e
$
i(1)],

which equals var[yi(1)] = var[η1] + var[εi(1)]. Hence

i) var[e
$
i(1)] = var[η1] + var[εi(1)]

From cov[yi(1), yi(2)] = (-a
$
)2var[yi(1)] and cov[yi(1), yi(2)] =

(-aη,1,1)
2var[η1] it follows that

j) a
$ 

=  aη,1,1var[η1] / var[yi(1)]

Note that the ratio ρ = var[η1] / var[yi(1)] defines the reliability in classical test theory

and abroad. Finally, from var[yi(1)] =

(-a
$
)2var[yi(1)] + var[εi(2)] + var[e

#
i(2)] and var[yi(1)] =

(-aη,1,1)
2var[η1] + var[εi(2)] it follows that

k) var[e
#
i(2)] = (-aη,1,1)

2var[η1]{1 - ρ}

Using i), j) and k) one can compute the parameters in the restricted NARMA from
those in the restricted quasi-simplex. Hence these equations define the mapping from
the restricted quasi-simplex to the restricted NARMA. To obtain the inverse mapping
from restricted NARMA to restricted quasi-simplex, one needs to start at the final
time T and work one’s way back to the initial time point. I will not describe the rather
boring details.
  The conclusion that for arbitrary T the 1-factor model can be rewritten as a
NARMA(1,1) has been formulated for a T-technique longitudinal factor model
involving repeated measurements of a univariate manifest variable yi(t), t=1,...,T. As

has been remarked at the close of section 2.1.2, nothing special hinges on the
interpretation of the manifest variables in a 1-factor model in terms of repeated
measurements. Hence it follows immediately that any 1-factor model for a p-variate
vector-valued manifest variable yi can be rewritten as a NARMA(1,1) expressed as

(2.23), where the index t in the latter expression now runs over the elements of yi:

t=1,2,...,p. This means that the 1-factor model is equivalent to a model involving
linear combinations of the manifest variables and the measurement errors. This result
has a variety of implications, of which I will mention a few, but first we collect our
fruits in a fancy basket.

I propose to refer to the transformation removing the common factor from a 1-
factor model as the Houdini transformation. The disappearance of the common factor
itself is not a very interesting accomplishment (in fact, each of us will disappear from
the surface of the earth at some future time). But it is the fact that the disappearance
can be undone which is remarkable. The transformation back from (2.23) to model b)
and then back to model a) always is possible. This turns the transformation into a
genuine analogue of acts of Houdini. In the end, the Houdini transformation turns out
to be exceedingly simple. As the late David Fulker used to say: "It can be computed
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on the back of an envelope". Specifically:

The Houdini  transformation for 1-factor models

- Given a 1-factor model, denote the vector of factor loadings by λλλλ ' = [λ1, λ2,

…, λp]. Compute βk,k-1 = λk / λk-1, k=2,…,p. These are the beta-coefficients

in the restricted quasi-simplex associated with this 1-factor model.
- Determine the initial conditions in (2.23) according to i), j) and k).
- Given the beta-coefficients obtained from the first step, construct yk,i - βk,k-

1yk-1,i = εk,i - βk,k-1εk-1,i, k=3,…,p.

This definition of the Houdini transformation has to be amended with special rules for
k=1,2. I leave this to the reader to elaborate on the basis of what has been said before
about the handling of initial conditions. It appears that for k > 2 the Houdini
transformation involves the taking of a simple linear combination of the k-th and (k-
1)-th manifest variables, and equating this to the same linear combination of the k-th
and (k-1)-th measurement errors.

To mention, at the close of this section, some possible implications of all this,
I first would like to refer back to the introduction of this section. The fact that a
common latent factor can be removed from a model, without affecting the goodness
of fit of this model, says something about the status of such a latent factor. In
particular, it implies something about the relationship of this latent factor with the
manifest variables. Presently, I will not elaborate what this something might be, but
this issue is addressed somewhat further in the final part of this chapter where
identifiability of state-space models will be considered from a general perspective.
Another, perhaps related, point is what the implications can be of the Houdini
transformation with respect to the indeterminacy of factor scores (Krijnen, 1999). Is
this indeterminacy still present in some ways in the NARMA(1,1) equivalent of the 1-
factor model? And, as a final example of possible implications of the Houdini
transformation, consider a 1-factor model in which the factor loadings are equal: λ1 =

… = λp. Suppose also that var[ε1,i] = … = var[εp,i]. In that case the elements of yi
constitute parallel measurements of the same construct (Lord & Novick, 1968). It then
follows that the NARMA(1,1) which according to the Houdini transformation is
equivalent to this parallel measurement factor model is: yk,i - yk-1,i = εk,i - εk-1,i,

k=3,…,p, where the right-hand side now has stationary “auto”-covariance function of
the index k. For the initial conditions, letting ρ = var[η1] / var[yi(1)] and remembering

that the expression for t=1 is vacuous, it holds that yi(2) - ρyi(1) = εi(2) + e
#
i(2),

where var[e
#
i(2)] =  var[η1]{1 - ρ}. Similar expressions can be derived for tau-

equivalent and congeneric measurements. These may cast a new perspective on the
concept of reliability in classical test theory. I consider these implications, and several
other ones not mentioned, as possibly interesting topics for future research.

2.2.6 Addition of multiple latent factors yields a univariate latent simplex

There are some important properties of the GC which until now have been left
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implicit. One of these concerns the applicability of the GC to a denumerable set of
NARMA processes. Application of the GC to a pair of NARMA processes taken from
this set yields again a NARMA process. If to the NARMA process thus obtained a
third NARMA process taken from the set is added, this yields again a NARMA
process. And so forth and so on. This shows that the GC stipulates that the operation
of addition of NARMA processes has a closure property in the algebraic sense. One
could also say that the GC provides for a connection with asymptotic theory, in
particular the (central) limit theorems. The latter connection with asymptotic theory
would seem to raise new questions. For instance, let NARMA(rn,sn) denote the result
of summing n NARMA processes, each of arbitrary order ri, si, i=1,...,n. Then the GC
implies that rn and sn are nondecreasing functions of n. What kind of asymptotic
theory (if any) is obtained if n increases indefinitely? Despite the intrinsic interest of
this question, we do not have to address it because only finite sums of NARMA
processes will be considered in what follows.

A second property of the GC concerns the assumption that the pair of
NARMA processes which are added together are weakly orthogonal, i.e., their cross-
covariance function is zero. This assumption can be dropped, as is already suggested
by Granger & Morris (1976) with respect to the addition of ARMA processes. Of
course, allowing for n NARMA processes to be correlated will complicate the
asymptotic theory about their sum even further. The details of dropping the
assumption concerned will not be worked out here, however, because we will only
consider finite sums of weakly orthogonal NARMA processes. I hope to elaborate
generalization of the GC to the addition of finite sums of correlated NARMA
processes in the near future.

The reason why these topics are brought up at the beginning of the present
section is the following. Consider a model having multiple common factors, for
instance an orthogonal 2-factor model. Then, as shown in section 2.1.3, this model
can be rewritten as a restricted latent bivariate simplex model. At the latent level the
latter model consists of two weakly orthogonal restricted NARMA(1,0) processes to
which the GC can be applied. This yields a univariate NARMA(2,1) at the latent
level. Finally, the GC can be applied again with respect to the addition of this
NARMA(2,1) and the NARMA(0,0) measurement error process, yielding a
NARMA(2,2). Here we have two applications of the GC, one to add the two
reatricted NARMA(1,0) processes representing the two common factors, and another
one to add the univariate NARMA(2,1) sum process thus obtained and the
measurement error process.

In what follows I will only detail the addition of latent variables associated
with the communal part of models, in particular addition of a pair of orthogonal
common factors. Hence subsequent application of the GC to measurement errors, as
was explained in the previous section, will no longer be considered (but can be
carried out, of course). Addition of a pair of common factors, addition of a pair
consisting of a common factor and a latent simplex, and addition of a pair of latent
simplexes, each yield a latent univariate NARMA(2,1) and in that respect behave the
same under application of the GC. Hence proceeding with the second and final step in
the complete Houdini transformation of these models, i.e., recursive application of the
GC to the addition of NARMA(2,1) and NARMA(0,0) measurement error, would in
each case yield manifest NARMA(2,2) models. But to reiterate, this final step will not
be considered in the present section in an attempt to keep the text within manageable
proportions.

We consider the addition of two orthogonal common factors, using the
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following numerical illustration:

yi = ΛΛΛΛηηηη i + εεεεi

yi = [y1,i, ..., y5,i]’, ηηηη i = [η1,i, η2,i]’, εεεεi = [ε1,i, ..., ε5,i]’

ΛΛΛΛ‘ = 
1 2 3 2 1

0 3 1 1 3











cov[εεεεi. εεεεi‘] = diag[1, 2, 3, 4, 5]

cov[ηηηη i, ηηηη i‘] = I2

This is an exploratory orthogonal 2-factor model for a 5-variate manifest variable yi.
Note that λ12 = 0, hence the model already includes the minimum identifiability
constraint. This constraint could have been omitted. But it is inconsequential, its only
convenient effect is that the parameter values given above are not affected by scaling
in subsequent model fits (see the analogous comment below (2.19) in section 2.2.4).
The true covariance matrix associated with this orthogonal 2-factor model is:

 

             

y y y y y

y

y

y
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y
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














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Following the approach described in section 2.1.3, the following instance of
the restricted latent bivariate simplex (2.5) also yields an exact fit to this covariance
matrix:

η
1,i

(t) = β
t,t-1

η
1,i

(t-1), t=2,...,5; η
1,i

(1) = ς
1,i

(1)

η
2,i

(t) = δ
t,t-1

η
2,i

(t-1), t=3,...,5; η
2,i

(2) = ς
2,i

(2)

y
i
(1) = η

1,i
(1) + ε

i
(1)

y
i
(t) = η

1,i
(t) + η

2,i
(t) + ε

i
(t), t=2,...,5

β
2,1 

= 2.00, β
3,2 

= 1.50, β
4,3 

= .67, β
5,4 

= .50

δ
3,2  

= .33, δ
4,3  

= 1.00, δ
5,4  

= 3.00

var[ς
1,i

(1)] = 1.00, var[ς
2,i

(2)] = 9.00, cov[ς
1,i

(1), ς
2,i

(2)] = 0

cov[εεεεi. εεεεi‘] = diag[1, 2, 3, 4, 5]
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The restricted latent bivariate simplex consists of the univariate components η
1,i

(t),

t=1,...,5, and η
2,i

(t), t=2,...,5, where η
1,i

(t) and η
2,i

(t) are weakly orthogonal

NARMA(1,0) processes. Hence the GC can be applied to these processes, yielding a
latent univariate NARMA(2,1). To see how this works in the present example, it is
convenient to shift to the notation in terms of polynomials in the backshift operator B
used in presenting the GC.

Define β
t
[B,1] = 1 - β

t,t-1
B and δ

t
[B,1] = 1 - δ

t,t-1
B. Then the first and second

univariate component simplex can be represented as, respectively:

η
1,i

(1) = ς
1,i

(1)

β
t
[B,1]η

1,i
(t) = 0, t=2,...,5

η
2,i

(1) = 0, η
2,i

(2) = ς
2,i

(2)

δ
t
[B,1]η

2,i
(t) = 0, t=3,4,5

We now consider the sum ξ
i
(t) = η

1,i
(t) + η

2,i
(t), t=1,...,5, which according to the GC is

a NARMA(2,1). If initial conditions could be neglected, it would follow that

β
t
[B,1]δ

t
[B,1]ξ

i
(t) = 0, t > 2

implying that for t > 2 the latent univariate ξ
i
(t) process obeys an autonomous second-

order difference equation. A difference equation is autonomous in case it lacks
external perturbations such as the random innovations ς

i
(t). Unfortunately, as will be

seen shortly, the initial conditions destroy the simple pattern of the coefficients in this
second-order difference equation for ξ

i
(t), t > 2.

The restricted latent NARMA(2,1) can be fitted to the covariance matrix
associated with the orthogonal 2-factor model by means of the following structural
equation model:

ξ
i
(1) = ν

i
(1)

ξ
i
(2) = γ2,1ξ

i
(1) + ν

i
(2)

ξ
i
(t) = γt,t-1ξ

i
(t-1) + γt,t-2ξ

i
(t-2), t=3,4,5

y
i
(t) = ξ

i
(t) + ε

i
(t), t=1,...,5

where cov[ν
i
(1), ν

i
(2)] = 0 and the measurement errors ε

i
(t) are defined in the same

way as in the orthogonal 2-factor model. This restricted NARMA(2,1) model yields
an  exact fit to the covariance matrix given above and has the same number of free
parameters as the orthogonal 2-factor model used to generate this covariance matrix.
The parameter values thus obtained are: γ2,1 = 2.0, γ3,1 = 2.33, γ3,2 = .33, γ4,2 = .14, γ4,3 =
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.57, γ5,3 = -5.0, γ5,4 = 8.0, var[ν
i
(1)] = 1.0, var[ν

i
(2)] = 9.0, cov[εεεεi. εεεεi‘] = diag[1, 2, 3, 4,

5].
I now will explain in some detail how the parameter values in the restricted

latent univariate NARMA(2,1) can be derived from the parameter values in the
restricted latent bivariate simplex. It has already been demonstrated in previous
sections how the parameter values in a restricted latent bivariate simplex are derived
from the parameter values in an orthogonal 2-factor model, hence this step will not be
considered again here. Suffice it to say that by deriving the parameter values in the
restricted latent NARMA from those in the restricted latent bivariate simplex, the
three sets of parameter values in the three equivalent models under consideration
(orthogonal 2-factor, restricted latent bivariate simplex, restricted latent univariate
NARMA) have one-to-one pairwise relationships. Given the values of one set of
parameters, the values in the remaining two sets of parameters can be derived exactly.
The derivation I will give of the parameter values in the restricted latent NARMA
from those in the restricted latent bivariate simplex is tedious and lacks elegance.
Because much of the material presented in this book is rather new and has been
elaborated in the process of writing, it may turn out that the derivation below can,
with some additional effort, be improved considerably in terms of elegance. The
reader who is willing to accept the one-to-one correspondence between the parameter
values of the restricted latent bivariate simplex and the restricted latent NARMA can
skip the rest of this section without harm.

We are going to specify the mapping from the restricted latent bivariate
simplex to the restricted latent univariate NARMA. Only the mapping from the β- and
δ-coefficients to the γ-coefficients have to be specified, because the mapping of the
variances of the latent innovations and the measurement error variances is trivial. At
time point t = 1 it simply holds that

ξ
i
(1) = η

1,i
(1) = ν

i
(1)

At time point t = 2 we have:

ξ
i
(2) = η

1,i
(2) + η

2,i
(2)

= β
2,1

η
1,i

(1) + η
2,i

(2)

= β
2,1

ξ
i
(1) + ν

i
(2)

Hence γ2,1 = β
2,1 

= 2.0. At time point t = 3 the following derivation can be given:

ξ
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3,2
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Hence γ3,1 = β
2,1

(β
3,2

 - δ
3,2

) = 2.33 and γ3,2 = δ
3,2 

= .33
Proceeding to time point t = 4, the computations become increasingly messy.

We have

ξ
i
(4) = η

1,i
(4) + η

2,i
(4)

The first term at the right-hand side can be rewritten as

η
1,i

(4) = β
4,3

β
3,2

β
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β
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i
(3) - δ

3,2
ξ
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(2)]Q

where Q = [(β
2,1

(β
3,2

 - δ
3,2

)]-1 is used to ease the notation. The second term on the right-
hand side is rewritten as

η
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Collecting terms yields

ξ
i
(4) = γ4,3ξ

i
(3) + γ4,2ξ

i
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Using the values of the β- and δ-coefficients we then get γ4,2 = .14 and γ4,3 = .57.
I think this should be sufficient to convey the pattern of derivation of the

parameter values in the restricted latent univariate NARMA from the parameter
values in the restricted latent bivariate simplex. The derivation for the final time point
t = 5 does not involve anything new and therefore is left as an exercise. We have
obtained the remarkable result that an orthogonal 2-factor model, i.e., a model having
a 2-dimensional common factor space, has been rewritten as a model involving a 1-
dimensional latent process described by a restricted NARMA(2,1). This result can be
generalized straightforwardly: an orthogonal q-factor model, q > 0,  can be rewritten
as a model involving a univariate latent restricted NARMA(q,q-1). Of course, by
adding the measurement error in the final step, each orthogonal q-factor model can be
Houdini transformed into a NARMA(q,q).

Before leaving the topic of detailed applications of the GC in the context of
structural equation models, I would like to address the addition of a latent simplex
and a common factor. One could interpret the latent simplex as describing a state-like
process, the predictability of which across consecutive time points is less than perfect.



80

In contrast, the common factor then would describe a trait-like process, the
predictability of which at the latent level is perfect (see discussion in section 2.1.6).
Such interpretations have been given, for instance, to the latent simplex and common
factor components of the longitudinal quantitative genetical model of Hewitt, Eaves,
Neale, & Meyer (1988). In 1987 Dorret Boomsma and I had introduced the
quantitative genetical quasi-simplex as a convenient model for longitudinal
phenotypic data (Boomsma & Molenaar, 1987). Shortly after the appearance of the
Hewitt et al. paper I met the authors at a conference in Boulder, where I showed them
that the latent simplex and common factor components in their model can be added,
yielding a univariate latent NARMA(2,1) process. In my opinion this transformation
proved that there was no qualitative difference between their model and ours, only a
difference in degree (or more specifically, a difference in the order of the underlying
NARMA process). I am not sure whether the authors shared my point of view.
Anyway, this little history shows that the addition of a latent simplex and a common
factor would appear to be the earliest instance of the use of the GC. The reader is
referred to Rovine & Molenaar (2001) for further details.

2.2.7 Discussion of the GC and some of its implications

In this closing section on the presentation of techniques to manipulate latent
variables, it may be worthwhile to qualify the obtained results in various ways. First
and foremost, it has to be reiterated that the techniques concerned are new, at least as
far as I know. I never encountered an equivalent of the GC in the published literature,
nor am I aware of publications on the systematic addition of latent variables. New
results are like young persons: they are beautiful and promising, but possible flaws
only become manifest with sufficient maturity. The techniques to manipulate latent
variables are immature in almost every respect and may inhere several latent flaws. It
is up to the working psychometricians and structural equation modelers to decide
what will remain of the whole exercise after closer scrutiny. This remark brings me to
another preliminary point. One should not interpret applications of the GC as a
stimulus to forget about models involving latent variables and only consider their
analogues in terms of manifest variables. Latent variable models can have transparent
structures which may be difficult to discern in manifest variable analogues. I will
return to this point in the next section.

The GC has been formulated in terms of dynamic NARMA processes, i.e.,
models for time-dependent processes. A dynamic NARMA model belongs to the class
of so-called causal models of time-dependent processes. A causal time series model
for a univariate process x(t), t=0,±1,... provides an explanation of the dynamics of x(t)
in terms of {x(t-k-1), z(t-k)}, where k ≥ 0. Accordingly, x(t) at each time point t is
explained by previously occurring values x(t-k-1), k ≥ 0, and instantaneous or
previously occurring realizations of extraneous influences z(t-k), k ≥ 0, where the r-
variate process z(t), r ≥ 1, usually includes a latent innovation process and possibly
additional time-dependent influences. A causal time series model does not explain the
dynamics of x(t) at each time point t in terms of future values x(t+m) and z(t+m), m ≥
1. It therefore obeys the simple characterization of physical causality according to
which an effect never can precede its cause. Causality thus understood, namely that
effects should not lead their causes in time, is called Granger causality in econometric
time series analysis (cf. Lütkepohl, 1993). In space-time models of physical wave
processes the restriction that effects should follow their causes in time gives rise to
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so-called dispersion relationships. Such a dispersion relationship has been used to
identify causal wave models of the electro-cortical potential field in Molenaar (1987).

Despite the centrality of causal time series models of time-dependent
processes, their use in other areas of signal analysis is less prominent. In particular the
spatial modeling of patterns requires consideration of noncausal variants of
(N)ARMAs. Take for instance a given picture made up of a grid of pixels. The
assumption that the picture is given, rules out any consideration of its build-up and
eventual subsequent changes in time (the latter dynamic aspect is called pattern
formation in mathematical biology; e.g., Murray, 1993, Chapters 14-17). A spatial
(N)ARMA describing the covariance between neighboring pixels will in general be
noncausal, because there exists no lead-lag direction in space that has an intrinsic
relationship with physical causality. Rosenblatt (2000, Chapter 8) presents an in-depth
discussion of the consequences of noncausality for spatial ARMA model estimation.

As I remarked in the foregoing sections, any q-factor model can be rewritten
as a restricted q-variate latent simplex. This formal equivalence holds irrespective of
the contingent fact whether or not the manifest variables constitute repeated
measurements obtained in some longitudinal design. Consider for instance a q-factor
model for a p-variate manifest variable yi obtained in a cross-sectional design. The p
component variables of yi lack any time-dependence in the sense which is relevant for
physical causality. Paraphrasing the jargon of relativity theory: the component
variables in yi are not time-like, at the most they are space-like. Hence it might be
considered to be more natural to rewrite the q-factor model for yi as a restricted latent
noncausal q-variate simplex. Moreover, according to the same reasoning the GC
should be reformulated (and proven, although this will involve only a slight
adaptation of the proof given earlier) in terms of noncausal NARMA models. This
point of view, namely that the manipulation of latent variables in cross-sectional
factor models requires an analogue of the GC which is formulated in terms of
noncausal NARMA models, should be taken seriously. I suspect that a similar point
of view is shared by Browne in his masterful discussion of circumplex models, when
he defines these models in a  noncausal way (Browne, 1992). Notwithstanding this
need to elaborate a noncausal extension of the GC and the Houdini transformation, it
should be recognized that causal (N)ARMA models have their place in the
manipulation of space-like latent variable models. Our successful applications of the
GC and the Houdini transform, yielding causal NARMA equivalents of standard
factor models, bear witness to this. For a useful compilation of early benchmark
papers on spatial causal ARMA models, the reader is referred to Mitra & Ekstrom
(1978). See Elliott, Aggoun & Moore (1995, Chapter 9) for an up-to-date exposition
of spatial modeling.

While I expect that causal and noncausal NARMA models will turn out to
play mutually supporting, not mutually exclusive, roles in the manipulation of latent
variables, there is another perspective from which noncausal models might be
assigned independent importance. This perspective concerns the possible
interpretation of the kind of structure that is obtained after application of the Houdini
transformation to a cross-sectional factor model. Stated more specifically, how could
one interpret the manifest restricted NARMA(1,1) that is obtained after application of
the Houdini transform to a 1-factor model for yi? Obviously, this NARMA(1,1)
describes a kind of interaction between component variables in yi. One could say that
the latent factor has been dissolved into a pairwise interaction defined on a lattice
composed of the manifest univariate components of yi. In a similar vein, the restricted
NARMA(q,q) obtained after application of the Houdini transformation to a q-factor
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model for yi can be interpreted as describing a (q+1)-term interaction defined on a
lattice carrying the manifest univariate component variables in yi. The geometrical
(topological, metrical) properties of such a lattice are inherited from the experimental
design according to which yi has been obtained. A longitudinal design will assign
stronger (metrical) properties to the lattice than a cross-sectional design. In this way
the interplay between algebraic group theory and experimental designs could be given
a natural place in the analysis of structural equation models. But what I consider to be
an even more interesting aspect of the manifest NARMA equivalents obtained by the
Houdini transformation is the prospect to apply concepts and techniques of field
theory to the lattice structures thus obtained. Statistical field theory (e.g., Le Bellac,
1991) has recently made its way into psychometrical realms in the guise of
computational techniques for probabilistic graphical models (Opper & Saad, 2001).
Probabilistic graphical models not only are intimately linked up with the issue of
causality (e.g., Pearl, 2000), but also can be assigned lattice properties in the context
of structural equation model (cf. Koster, 1999).

In my view the recent applications of mean field computational techniques
drawn from statistical field theory will prove to have wider implications. Field
theoretical concepts also may turn out to be powerful tools for the interpretation of
structural equation models and the ongoing discussion about causality. The GC then
may be helpful in making explicit the lattice structures implied by common factor
models and their likes. In fact, statistical field theory may have even more to offer. It
always struck me that there appears to be a close connection between the basic
expressions underlying item-response theory and the solutions of elementary lattice
fields in statistical physics. For instance, there is almost a one-to-one formal
correspondence of the solution of the Ising model (a lattice with nearest neighbor
interaction between binary-valued sites; e.g., Kindermann & Snell, 1980, Chapter 1)
and the Rasch model (Fischer, 1974).

Another important qualification of the results presently obtained concerns
extension of the GC to the addition of dependent NARMA processes. As indicated
before, this possibility was mentioned, but not further considered, by Granger &
Morris (1976). The proof of the GC for dependent NARMA processes largely can
proceed along the lines of the schematic proof given in section 2.2.2. But the
computational details of the mappings thus defined will become more complex and
for the moment still constitute terra incognito. Yet elaboration of the GC for
dependent NARMA processes as well as the analogous Houdini transformation is
important in applications of the techniques for manipulation of latent variables in
longitudinal factor models with multivariate manifest variables at each time point.
Consider the standard longitudinal factor model given in section 2.1.6 in which y

i
(t)

denotes a p-variate vector of observations for subject i at time t; t=1,2,...,T. Then the
longitudinal factor model is defined by:

y
i
(t) = ΛΛΛΛ

t
ηηηη

i
(t) + εεεε

i
(t), t=1,...,T; i=1,2,...

(2.24)
ηηηη
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t,t-1
ηηηη
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(t-1) + ζζζζ

i
(t), t=2,...,T

where ΛΛΛΛ
t is a (p,q)-dimensional matrix of factor loadings at time t, ηηηη

i
(t) is a q-variate

latent factor at time t, εεεε
i
(t) is p-variate measurement error at time t, ΒΒΒΒ

t,t-1 is the (q,q)-
dimensional matrix of regression weights linking ηηηη

i
(t) to ηηηη

i
(t-1), and ζζζζ

i
(t) denotes q-

variate innovation at time t. If p = q = 1 then the quasi-simplex model is obtained, for
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which the Houdini transformation has been specified in section 2.2.4. If q > 1 then the
standard longitudinal factor model involves a q-variate simplex at the latent level. The
pattern of dependence between the q univariate component processes making up ηηηη

i
(t)

is described by ΒΒΒΒ
t,t-1

, t=2,...,T and ΨΨΨΨt = cov[ζζζζ
i
(t), ζζζζ

i
(t)’], t=1,...,T (ηηηη

i
(1) = ζζζζ

i
(1)).

For arbitrary identifiable ΒΒΒΒ
t,t-1 

and ΨΨΨΨt this pattern of dependence between the q
univariate component processes in ηηηη

i
(t) can be quite intricate. A special case is

obtained by restricting ΒΒΒΒ
t,t-1

, t=2,...,T to be a sequence of T-1 (q,q)-dimensional
diagonal matrices, while ΨΨΨΨt, t=1,...,T still is arbitrary. In this case a straightforward
generalization of the GC for dependent NARMA processes can be formulated
according to which the q univariate components in ηηηη

i
(t) can be added. I think that this

is the kind of dependence which Granger & Morris (1976) had in mind when they
mentioned the possibility to extend their theorem to the addition of dependent ARMA
processes. For arbitrary ΒΒΒΒ

t,t-1 
and ΨΨΨΨt, however, I expect that more powerful

transformation techniques will be necessary in order to arrive at a representation
involving weakly independent univariate component processes. Such a transformation
technique is available for weakly stationary multivariate processes (Brillinger, 1975,
Chapter 9; Molenaar, 1987).

The discussion in this section shows that the proposed techniques to
manipulate latent variables only constitute the first few steps into a large unexplored
area. Even with respect to the steps actually made there remain several additional
aspects that require further scrutiny and elaboration. For instance concerning the best
way to handle the case p > 1 in the standard longitudinal factor model. As to that, in
the next section some references are made to relevant results from algebraic systems
theory.

2.3 General state space methods to manipulate latent variables

Part of the theory of state-space models is devoted to the question: “Given a
specific process, what systems can generate it as an output process when the input
process is restricted to be simple in some technical sense?” (Caines, 1988, p. 199).
For instance, suppose that a given process is weakly stationary and that input
processes are required to be white noise processes. Then the set of possible systems
that might have generated the given process under the influence of white noise input
includes those of the ARMA type. Another way to put this is that weakly stationary
processes can be generated or realized by means of ARMA systems driven by white
noise input. Accordingly, the part of the theory of state-space models concerned with
this question is called realization theory. Realization theory aims to provide for the
delineation of important equivalence classes of systems, the complete characterization
of each equivalence class, and the specification of different representations of each
element of an equivalent class. It is especially this latter aim, specification of different
model representations of a system type, that is of present interest, because it covers
(among a great many of other things) the ways in which different representations (for
instance ARMA and state-space) are related to each other. My aim in this section is
very modest, namely to present and discuss a fundamental theorem in the realization
theory of linear stochastic systems on the relationship between multivariate NARMA
models and state-space models. It will be shown that the Houdini transformation is a
special case of this theorem.
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In what follows I will mainly draw on two sources: Caines (1988) and Hannan
& Deistler (1988). To the best of my knowledge, Caines (1988) is the only source in
which the relationship between multivariate NARMA models and state-space models
is addressed head-on. Many publications only address the transformation in one
direction, namely rewriting a multivariate NARMA model as state-space model. But
it is especially the reverse direction of this relationship that is of interest for our
present concerns: rewriting a state-space model as a multivariate NARMA model.
Hannan & Deistler (1988, Theorem 1.2.1, p. 16) also address this relationship, but in
an indirect way, without proofs, and restricted to the weakly stationary case.

Consider the following linear nonstationary state-space system:

y(t) = ΛΛΛΛ(t)ηηηη(t) + εεεε(t)
(2.25)

ηηηη(t+1) = ΒΒΒΒ(t)ηηηη(t) + ζζζζ(t)

where y(t) is a p-variate manifest (output) process, εεεε(t) is p-variate white noise
measurement error, εεεε(t) ∼ℵ (0, ΘΘΘΘt), ηηηη(t) is a q-variate state process, ζζζζ(t) is q-variate
white noise innovation, ζζζζ(t) ∼ℵ (0, ΨΨΨΨt), and ΛΛΛΛ(t) and ΒΒΒΒ(t) are matrices of appropriate
dimensions at each time t. The similarity of this state-space model to the standard
longitudinal factor model (2.24) given in the previous section should be obvious. The
stationary analogue of (2.25) is given by (1.2) and (1.3) in Chapter 1. It is our aim to
show that (2.25) can be rewritten as a p-variate NARMA model (to be defined
below). This will be accomplished in a number of steps, each of which is described in
a somewhat heuristic fashion. No proofs will be given, only detailed references to
Caines (1988) and Hannan & Deistler (1988) where the proofs concerned can be
found. The reason for doing so is that the proofs, although rather simple, are not very
illuminating. Moreover, proving the equivalence between (2.25) and the class of p-
variate NARMA models should be conceived of as a proof of the existence of
mapping rules between the two types of representation. The actual construction of
these mapping rules is an entirely different, and much more difficult, matter that is
made even more difficult due to the intricate effects of initial conditions. It is in this
constructive phase, as yet unrealized in the present context, where the hard work will
have to be done.

The first step in rewriting (2.25) as a p-variate NARMA model involves the
introduction of a restrictive assumption. It is required that the matrix OOOO(t; q) has full
rank q for each time t, where OOOO(t; q)’ = [ΛΛΛΛ(t)’, { ΛΛΛΛ(t+1)ΒΒΒΒ(t+1)}’,
{ ΛΛΛΛ(t+2)ΒΒΒΒ(t+1)ΒΒΒΒ(t+2)}’, ..., {ΛΛΛΛ(t+q)ΒΒΒΒ(t+1)ΒΒΒΒ(t+2)...ΒΒΒΒ(t+q-1)}’]. If (2.25) obeys this
assumption then it is called observable. To see what this implies, suppose that
measurement error is lacking in (2.25), i.e., y(t) = ΛΛΛΛ(t)ηηηη(t), and that (2.25) is
observable. Then ηηηη(t) can exactly be determined (observed) from y(t; q) = [y(t)’,
y(t+1)’, ..., y(t+q-1)’]’ as

ηηηη(t) = [OOOO(t; q)’OOOO(t; q)]-1OOOO(t; q)’y(t; q)

(see Shumway & Stoffer, 2000, p. 328, for the stationary case).
The second step consists in rewriting (2.25) in a different form, the so-called

prediction error form. Define the one-step ahead prediction error νννν(t) = y(t) - ΛΛΛΛ(t)ηηηη(t |
t-1), where ΛΛΛΛ(t)ηηηη(t | t-1) is the prediction of y(t) based on information up to time t-1,
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i.e., based on {y(k), k < t}. Note that νννν(t) is a p-variate white noise process. Then
(2.25) can be rewritten as:

y(t) = ΛΛΛΛ(t)ηηηη(t | t-1) + νννν(t)
(2.26)

ηηηη(t +1 | t) = ΒΒΒΒ(t)ηηηη(t | t-1) + K(t)νννν(t)

The (q,p)-dimensional matrix K(t) is defined recursively, in the same way as the
matrix of the same name in the definition (1.5) of the Kalman filter in Chapter 1.
Although the Kalman filter given in (1.5) is based on a stationary state-space model,
the same set of expressions hold for the nonstationary state-space model (2.25) after
substituting time-varying model parameters for their time-homogeneous analogues
(cf. Hannan & Deistler, 1988, p. 91). The proof of the equivalence of (2.25) and
(2.26) is given in Hannan & Deistler (1988, p. 16-18). Their proof, consisting of
simple substitution steps, is given for the stationary state-space model, but carries
over straightforwardly to the nonstationary case.

The third and final step consists in the proof of the following theorem adapted
from Caines (1988, Theorem 4.3, part 2, p. 111-114): Let (2.26) be observable for all
times t. Then it can be rewritten as a p-variate NARMA(q,q) model given by

At[B, q]y(t) = Ct[B, q]νννν(t)

(2.27) At[B, q] = Ip + At,1B + ... + At,qB
q

Ct[B, q] = Ip + Ct,1B + ... + Ct,qB
q

where νννν(t) is the p-variate white noise prediction error in (2.26) and where for each
time t At,i and Ct,i , i=1,...,q, are (p,p)-dimensional autoregressive and moving-average
coefficient matrices, respectively. The proof is obtained by writing out the second
equation of (2.26) for t+q+1 consecutive time points in the following way (letting ξξξξ(t)
denote ηηηη(t | t-1) in order to avoid cumbersome notation):

ξξξξ(t+1) = ΒΒΒΒ(t)ξξξξ(t) + K(t)νννν(t)

ξξξξ(t+2) = ΒΒΒΒ(t)ΒΒΒΒ(t+1)ξξξξ(t) + ΒΒΒΒ(t+1)K(t)νννν(t) + K(t+1)νννν(t+1)

.....

ξξξξ(t+q+1) = ΒΒΒΒ(t)ΒΒΒΒ(t+1)...ΒΒΒΒ(t+q)ξξξξ(t) + ΒΒΒΒ(t+1)...ΒΒΒΒ(t+q)K(t)νννν(t) + ... +
 ΒΒΒΒ(t+q)K(t+q)νννν(t+q)

Because this system of equations obeys the observability criterion, and given that y(t)
= ΛΛΛΛ(t)ξξξξ(t) + νννν(t), it follows that there exist appropriate (p,p)-dimensional matrices At,i

and Ct,i , i=1,...,q, such that (2.27) is obtained. In case the state-space system is
stationary, the part in the proof played by the observability criterion can be replaced
by an appeal to the Cayley-Hamilton theorem (cf. Padulo & Arbib, 1974; p. 283;
Caines, 1988, p. 814-815).

It appears that the proof of Caines’ theorem involves two simple steps: a)
transform the state-space model into prediction error form and b) use the observability
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criterion to conclude that at each time t the state-space in this model is spanned by the
rows of OOOO(t; q), implying that the system of q+1 equations for ξξξξ(k), k=t+1,...,t+q+1,
given above is linearly dependent. One thus obtains a proof of the existence of one-to-
one mapping rules between (2.25) and (2.27), i.e., between linear nonstationary state-
space models and p-variate NARMA(q,q) models. With Caines’ theorem in hand, the
specification of mapping rules can proceed without further worries about their
existence. In this sense, the theorem corroborates a Platonic interpretation of
mathematical objects, including the difficulties encountered in actually specifying
their shadowy projections in our sensuous world. In the special case of stationary
processes use can be made of polynomial matrix algebra (Blomberg & Ylinen, 1983),
but even here the handling of initial conditions will complicate the mapping rules thus
obtained. We already encountered the top of this iceberg of complications due to
initial conditions in sections 2.2.5 and 2.2.6. This will become much worse in the
more general case.

This last remark brings us to the question about the relationship between the
Houdini transformation and Caines’ theorem. This question has an easy and
unambiguous answer: the Houdini transformation is a special case of Caines’ theorem
in that the latter implies the existence of the former. Consider the Houdini
transformation for the 1-factor model specified in section 2.2.5 and suppose, to
simplify matters, that the observations consist of longitudinal univariate data obtained
at T measurement occasions. The 1-factor model then is given by: yi(t) = λ tη i + εi(t),
t=1,...,T, which is of the same form as the first equation in (2.25) with p = 1 and q = 1.
As discussed in Chapter 1 and at the start of section 2.2.3, at this level of model
specification the shift from a within-subjects perspective (state-space model) to a
between-subjects perspective (longitudinal factor model) is immaterial. According to
Caines’ theorem, this 1-factor model can be rewritten as a univariate NARMA(1,1),
which is the same conclusion as obtained by invoking the Houdini transformation. Of
course, our Houdini transformation for the 1-factor model also specifies the details of
the mapping rules involved, making use of the GC. These constructive details are
lacking in Caines’ theorem.



3.  The (lack of) relationship between longitudinal 
and time  series analysis 
 
 In the previous two chapters we saw that the standard longitudinal factor 
model and the linear state-space model have the same formal structure. The matrix-
algebraic equations making up the longitudinal factor model (2.24) are the same as 
those defining the state-space model (2.25). This formal equivalence has been 
exploited in Chapter 1 to show the relationship between the regression factor score 
estimator and the Kalman filter (this relationship will be extended to longitudinal 
factor score estimators in the next chapter). In the same vein, in Chapter 2 the first 
steps have been made towards a realization theory for structural equation models. In 
the present chapter I will further pursue the common homology of longitudinal and 
state-space models, but this time in a more discriminative fashion. Despite the fact 
that state-space and longitudinal factor models bear close family relationships to each 
other regarding structural form and estimation theory, they differ in one important 
aspect. In the wordings of Chapter 1, longitudinal factor models describe the variation 
between homogeneous systems (between-system variation, BSV), whereas state-space 
models describe the variation of a single system (within-system variation, WSV). 
This is not so much a difference at the level of algebraic or mathematical-statistical 
theory, but concerns the possibly different characteristics of these two types of 
variation themselves.  
 In what follows I will argue that the actual structure of BSV has to be 
considered to be different from the analogous structure of WSV, unless certain strict 
criteria have been met. Stated more succinctly, it will be shown that longitudinal 
factor analysis of BSV yields results that should be considered to be unrelated to 
those obtained in state-space analysis of WSV, unless explicitly established 
otherwise. I draw my arguments from the mathematical-statistical literature, from 
psychometric sources, from theoretical psychology, and from results obtained with 
simulation studies. But first and foremost I intend to present a coherent set of reasons 
why the structure of variation between and within systems will differ in general, and 
why this state of affairs has important consequences for applied psychometrics and 
psychology.   
 

3.1 Ensembles again 
 
 In Chapter 1 the notion of ensemble was introduced to provide a common 
framework for the discussion of factor models and state-space models. An ensemble 
was defined as the set {yi(t); t=0,±1,...; i=1,2,...} composed of a countable infinite 
number of realizations of a random p-variate process y(t). Accordingly, an ensemble 
can be conceived of as an extensive entity (in the thermodynamical sense of extensive 
as being directly proportional to the size of something; cf. Thompson, 1988, p.31-32) 
corresponding to the well-known concept of population in sampling-theoretical 
statistics. The concept of ensemble arose in statistical mechanics and 
thermodynamics, where its precise status has been the subject of some controversy. In 
contrast, ensembles appear to be relatively unknown in psychometrics. What, then, 
are the reasons to consider it in the present context? Why not stick to the simple and 
clear twin concepts of population and domain of generalization? The answers I will 
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give to these questions are tuned to the main theme of this chapter, namely the 
relationship between results obtained with analyses of BSV and of WSV. This 
seemingly redundant announcement is made because some aspects of the following 
discussion not only have not been addressed elsewhere in the psychometrical 
literature on structural equation modeling, but also may initially seem to be somewhat 
unrelated to our main theme. 
 I have always felt a bit uneasy about the concept of infinite population in 
statistics. It denotes the set of entities which are homogeneous in all relevant aspects, 
a random sample of which is drawn for explicit study. It also constitutes the domain 
of generalization of the results obtained with the random sample. The characterization 
“homogeneous in all relevant aspects” will be considered later on; for the moment let 
us take it at face value (ambiguities included). But what is a population? Is it a set of 
real entities, or is it instead a set of virtual entities? If it is a set of real entities, then 
are these entities supposed to interact with each other? And can different populations 
interact? If it is a set of virtual entities, then is there a separate population for each 
experimental set-up (like the way in which state preparation figures in quantum 
physics; cf. Bellantine, 1990, Chapter 8)? Questions such as these are hardly raised in 
the psychometrical literature, so I had to look elsewhere for possible answers. It 
turned out that similar questions concerning the status of ensembles have given rise to 
important theoretical developments in statistical mechanics (cf. Farquhar, 1964). It is 
not so much the case that one can give unique answers to questions such as whether 
or not an ensemble should be considered to be virtual, because different, but 
consistent, answers have been given to this particular question. Yet it becomes 
evident that the way in which one conceptualizes ensembles (e.g., as real or virtual 
sets) has major implications for the further theoretical built-up of statistical 
mechanics. Perhaps what holds for ensembles in statistical mechanics also pertains to 
the similar concept of population in statistics. Perhaps the concept of population is not 
so unproblematic after all.  
 The main reason I have for considering the concept of ensemble is that it 
provides one with a mental picture that is helpful in understanding the relationship 
between analyses of BSV and WSV. In contrast to the rather static concept of 
population, an ensemble is inherently tied up with dynamics. A population is a set of 
indices or a domain, whereas an ensemble is a manifold of trajectories of some 
dynamical system. A well-known example of the dynamical nature of ensembles is 
given by the action of Hamiltonian systems in so-called phase space. Such action 
induces a smooth manifold of trajectories with invariant measure (Liouville theorem, 
cf. Cornfield, Fomin, & Sinai, 1982, p. 48). In the present context we will only need a 
much more simple kind of ensemble. The ensemble {yi(t); t=0,±1,...; i=1,2,...} 
introduced above consists of a countably infinite number of time-dependent 
trajectories, where each trajectory is the realization of a p-variate process y(t). The 
dynamical nature of this ensemble is evident. In what follows it will be called our 
standard ensemble.  
 The standard ensemble provides a natural setting for discussion of the 
relationship between analyses of BSV and WSV. It already served that purpose in 
Chapter 1 where the relationship between the regression factor score estimator and the 
Kalman filter was derived. An analysis of BSV typically starts with fixing T time 
points, where T usually is small (including the possibility that T=1). A sample of N 
realizations is drawn, where N usually is large, yielding the observations {yi(t); 
t=1,2,...,T; i=1,2,...,N}. Next all statistics (means, covariances, etc.) are obtained by 
averaging over i=1,...,N. For instance, the covariance matrix in a longitudinal factor 
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analysis at T time points is estimated by constructing for each i the Tp-dimensional 
supervector yi = [yi(1)’, ..., yi(T)’]’, after which the (Tp,Tp)-dimensional longitudinal 
covariance matrix is estimated by averaging products yiyi‘ over i=1,...,N (neglecting 
inessential mean corrections for the moment). In contrast, an analysis of WSV 
typically starts with fixing one system i=1 that is observed at T time points, where T 
usually is large. This yields the data {y1(t); t=1,2,...,T}. Next all statistics (mean 
function, covariance function, etc.) are obtained by averaging over t=1,...,T. For 
instance, the (p.p)-dimensional covariance function at lag u in a state-space analysis is 
estimated by averaging products y1(t)y1(t+u) over t=1,...,T-|u|.  
 Despite the differences between an analysis of BSV (statistics are averages 
over systems) and of WSV (statistics are averages over time points), the description 
just given makes clear that both are based on data sampled from the same standard 
ensemble. Sampling data from an ensemble can be likened to placing a window of 
finite extent over the ensemble and keeping the part within this window as data. The 
way in which such a window is placed in an analysis of BSV differs from that in an 
analysis of WSV. But in both types of analysis the window is placed over the same 
ensemble, and therefore this ensemble provides a natural setting for comparison of 
these types of analysis.  
 Having presented my reasons for considering ensembles, I should hasten to 
add a qualification and also mention a caveat. The qualification concerns the mere 
heuristic use which will be made of the concept of ensemble. In what follows, no 
appeal will be made to the profound theoretical elaborations of the various kinds and 
roles of ensembles in statistical mechanics. This does not imply that I consider these 
theoretical issues unimportant for psychometrics and structural equation modeling (as 
indicated by some of my critical remarks in this section about the concept of 
population), but any serious consideration would take us too far from the main topic 
of this book. The caveat concerns the ontological status of the trajectories in our 
standard ensemble: are they best conceived of as being real or virtual? Until now 
different values of the subscript i in the ensemble {yi(t); t=0,±1,...; i=1,2,...} have 
been treated as referring to different systems. This is allowed, but then it should be 
acknowledged that for each given value of i = S (for each individual system S), yS(t), 
t=0,±1,... denotes a random process that itself is composed of an infinite number of 
possible trajectories. The latter subensemble of possible trajectories of i = S 
constitutes a set of virtual entities, while the different systems i=1,2,... themselves can 
be taken to be real. It follows that the standard ensemble has more structure than is 
made explicit in our notation. 
 

3.2 (Non)-ergodicity  
 
 In this section I will start with the presentation of a number of arguments 
which all converge to the same conclusion, namely that there are in general no lawful 
relationships between results of analyses of BSV and WSV. We first take a look at a 
mathematical-statistical theory that explicitly deals with this relationship, namely 
ergodic theory. The concept of ergodicity was introduced by Boltzmann in his work 
on the foundations of statistical mechanics. Sklar (1993) and Guttman (1994) give 
excellent nontechnical discussions of the intricacies associated with the ergodic 
hypothesis in statistical mechanics. The ergodic hypothesis roughly states that in a 
pure gas, kept at a fixed temperature in a container shielded from the environment, 
averages taken along the trajectory of a single gas molecule in phase space 
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asymptotically approach averages taken with respect to the distribution of molecules 
in phase space. The trajectory of a single molecule m describes its “life history” and is 
an intrinsically dynamical entity. Taking averages along such a trajectory over 
increasingly large time intervals can be schematically represented as 
 
(3.1)  f[ym(*)] = limT→∞  T-1∑tf[ym(t)] 
 
where f[.] denotes a sufficiently smooth function. Taking averages with respect to the 
distribution of molecules in phase space can be schematically represented as 
 
(3.2)  f[y*] = N-1∑if[yi] 
 
where N is understood to be very large (Avogadro’s number). The time argument has 
been omitted in (3.2) to accentuate the difference with (3.1); one can understand (3.2) 
as holding at some fixed time t.  
 Although this simplistic sketch of the ergodic hypothesis leaves out all 
interesting issues, it makes clear that the hypothesis captures the essence of our main 
question in this chapter concerning the relationship between analyses of BSV and 
WSV. The ergodic hypothesis proclaims the equality of (3.1) and (3.2), where in our 
terminology (3.1) pertains to an analysis of WSV and (3.2) pertains to an analysis of 
BSV. Hence any answer to the ergodic hypothesis would seem to imply an answer to 
our present question. It will turn out that the ergodic hypothesis (in some suitably 
modified form) can only be accepted if the “life histories” of molecules (and of 
systems in our standard ensemble) obey very strict criteria. This implies that in all 
those cases where these criteria are not met, equality of (3.1) and (3.2) does not 
obtain. And by implication, it then follows that in these cases analysis of BSV yields 
results that are different from those obtained in analysis of WSV. 
 What are the conditions under which the ergodic hypothesis holds? These are 
laid down in a number of ergodic theorems proved by eminent mathematicians such 
as Birkhoff, von Neumann, Hopf, and Kingman. Petersen (1983) and Cornfield, 
Fomin, & Sinai (1982) give excellent overviews of this material. These deep results, 
however, will not be needed in the present context in which we focus on the simplest 
possible case of Gaussian processes {yi(t); t=0,±1,...; i=1,2,...}. A Gaussian process is 
ergodic if it obeys the following restrictions: a) it is weakly stationary (and hence 
strictly stationary), and b) its spectrum has no jumps (cf. Hannan, 1970, p. 201). The 
latter restriction b) rules out the presence of sinusoidal trends. If a Gaussian process 
obeys a) and b), then (3.1) equals (3.2) for this process. More specifically, the mean 
function and, more importantly, the covariance function of this process as obtained 
from (3.1) converge to their analogues defined by (3.2). Hence for an ensemble of 
ergodic Gaussian systems, the covariance function estimated along the trajectory of 
one individual system (i.e., derived from WSV) converges to the covariance function 
averaged across all systems in the ensemble (i.e., derived from BSV). This is the 
content of a theorem in Hannan (1970, p. 203, Theorem 2).  
 Evidently, the restriction guaranteeing that Gaussian processes are ergodic is 
rather severe: they have to be weakly stationary. More specifically, weak stationarity 
is a sufficient criterion for ergodicity of Gaussian processes. We will not dwell on 
necessary criteria, because that would require explicit consideration of the ergodic 
theorems. Instead, I will use the following principle: a Gaussian process is called 
almost certainly non-ergodic (ACNE; pun intended) if it is not weakly stationary. 
This principle accommodates certain special cases such as discussed in Gray (1988). 
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It will be clear that many empirical processes suffer from ACNE. Developmental 
processes, learning processes, evolutionary processes, these are all examples of 
processes affected by ACNE because they are, almost by definition, nonstationary in 
various respects. But there are many other examples of a more special nature, such as 
the requirement that neural networks have to be nonergodic in order to function 
properly (Amit, 1989). The diagnosis for the existence of lawful relationships 
between results obtained in analyses of BSV and WSV does not look good.  
 To specify where this leads us with respect to the relationship between 
longitudinal factor analysis and state-space analysis,  
consider again the longitudinal factor model given by (2.24): 
 
  yi(t) = Λtηi(t) + εi(t), t=1,...,T; i=1,2,... 
 
  ηi(t) = Βt,t-1ηi(t-1) + ζi(t), t=2,...,T 
 
where Λt is a (p,q)-dimensional matrix of factor loadings at time t, ηi(t) is a q-variate 
latent factor at time t, εi(t) is p-variate Gaussian measurement error at time t: ε(t) 
∼ℵ(0, Θt), Βt,t-1 is the (q,q)-dimensional matrix of regression weights linking ηi(t) to 
ηi(t-1), and ζi(t) denotes q-variate Gaussian innovation at time t: ζ(t) ∼ℵ(0, Ψt). This 
model is ergodic if it has the restricted form: 
 
  yi(t) = Ληi(t) + εi(t), t=1,...,T; i=1,2,... 
(3.3) 
  ηi(t) = Βηi(t-1) + ζi(t), t=2,...,T 
 
where Λ is invariant over time, εi(t) has constant covariance: ε(t) ∼ℵ(0, Θ), Β  is 
invariant over time, and ζi(t) has constant covariance: ζ(t) ∼ℵ(0, Ψ). In addition, the 
absolute value (modulus) of each eigenvalue of Β has to be strictly less than 1. In a 
similar vein, consider again the linear nonstationary state-space system given by 
(2.25): 
 
  y(t) = Λ(t)η(t) + ε(t) 
 
  η(t+1) = Β(t)η(t) + ζ(t) 
 
where y(t) is a p-variate manifest (output) process, ε(t) is p-variate Gaussian white 
noise measurement error: ε(t) ∼ℵ(0, Θt), η(t) is a q-variate state process, ζ(t) is q-
variate Gaussian white noise innovation: ζ(t) ∼ℵ(0, Ψt), and Λ(t) and Β(t) are 
matrices of appropriate dimensions at each time t. This state-space system is ergodic 
if it has the restricted form:  
 
  y(t) = Λη(t) + ε(t) 
(3.4) 
  η(t+1) = Βη(t) + ζ(t) 
 
where ε(t) has constant covariance:: ε(t) ∼ℵ(0, Θ), ζ(t) has constant covariance: ζ(t) 
∼ℵ(0, Ψ), while Λ and Β are invariant over time. In addition, the absolute value 
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(modulus) of each eigenvalue of Β  has to be strictly less than 1. Model (3.3) 
describes the structure of BSV, whereas (3.4) describes the structure of WSV. 
Asymptotically, application of (3.3) and (3.4) yields converging results (in some 
appropriate probabilistic sense). As soon as one or more parameter matrices are not 
time-invariant, or eigenvalues of Β have modulus larger than 1, (3.3) and (3.4) reduce 
to (2.24) and (2.25), respectively. The latter nonstationary models suffer from ACNE 
and their application can no longer be expected to yield converging results.  
 

3.3 The restrictive nature of classical test theory 
 
 In this section an aspect of classical test theory is discussed that is not often 
emphasized in the psychometric literature. It will be shown that this aspect has a 
direct bearing on our question concerning the relationship between analyses of BSV 
and WSV. The focus will be on the definition of true score which found its most 
eloquent expression in Lord & Novick (1968). They define the true score of a fixed 
person as the expected value of the observed score of this person with respect to the 
propensity distribution of this person’s observed scores. The latter propensity 
distribution is characterized as a “... distribution function defined over repeated 
statistically independent measurements on the same person” (Lord & Novick, 1968, p. 
30). It is assumed that the repeated measurements do not affect the person in that in 
each replication the person responds without any aftereffects of previous assessments 
(e.g., due to memory, habituation, etc.). Stated more formally, it is assumed that in 
each replication the observed score is an independent realization of the same random 
variable.  
 It is clear from this definition of the true score of a fixed person that it is based 
on a stochastic process describing the WSV of this person. The stochastic process is 
supposed to lack any sequential dependencies and in this sense it is akin to a white 
noise process. But contrary to a regular white noise process, the process underlying a 
propensity distribution has in general nonzero mean function. In addition, this process 
is supposed to be strictly stationary in that it obeys the same propensity distribution at 
each time point (measurement occasion). This implies that the stochastic process has 
constant mean function (equal to the true score of the person), while its covariance 
function is stationary: constant variance at each time point and zero covariance at all 
nonzero lags. We will refer to this particular stochastic process underlying a 
propensity distribution as the Lord & Novick process.  
 With respect to this WSV definition of true score (and of error score as the 
difference between observed score and true score), Lord & Novick (1968, p. 32) make 
the following remark: “The true and error scores defined above are not those 
primarily considered in test theory ... . They are, however, those that would be of 
interest to a theory that deals with individuals rather than with groups (counseling 
rather than selection) ... .” I consider this a noteworthy remark because it might 
indicate that Lord & Novick appreciate the possible lack of relationship between test 
theories based on WSV and BSV. The true and error scores that are considered in test 
theory are defined in terms of BSV: “Primarily, test theory treats individual 
differences or, equivalently, measurements over people” (Lord & Novick, 1968, p. 
32). The first quoted remark of Lord & Novick would seem to imply that such a test 
theory based on BSV may not be relevant to individual assessment and counseling.  
 Classical test theory as developed in Lord & Novick (1968) is based on 
analysis of BSV. A population of persons is considered in which each person has its 
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own propensity distribution of scores, characterized by a person-specific mean and 
variance. Taking into consideration that a Lord & Novick process yi(t) underlies each 
person-specific propensity distribution in this population, we obtain an ensemble 
{yi(t); t=0,±1,...; i=1,2,...}. For each person i, yi(t) denotes a stochastic Lord & Novick 
process with stationary mean function (equal to the true score of this person) and 
stationary covariance function (equal to a white noise covariance function). Hence 
within each person this Lord & Novick process is at least weakly stationary. But the 
propensity distributions characterizing different persons in the population have 
person-specific means and variances, hence their underlying Lord & Novick 
processes are heterogeneous across persons. Consequently, the total ensemble {yi(t); 
t=0,±1,...; i=1,2,...} cannot be ergodic, even if the individual Lord & Novick 
processes are considered to be Gaussian processes. This is immediately obvious if one 
considers taking averages along the trajectory of one individual Lord & Novick 
process. The statistics thus obtained (mean, variance, etc.) pertain to one particular 
person in the ensemble, but certainly not to any other person in the ensemble or to the 
ensemble as a whole. In reverse, taking averages over persons, i.e., taking averages 
over the values of trajectories in the ensemble at a fixed time point, yields statistics 
that do not pertain to the individual propensity distributions and associated Lord & 
Novick processes characterizing each person in the population. Here we have a case 
in which nonergodicity is not due to nonstationarity, but to heterogeneity. Some rather 
surprising effects of heterogeneity on the relationship between analyses of BSV and 
WSV will be discussed in the next section. 
 I conclude that classical test theory is based on a heterogeneous ensemble. 
This implies that this ensemble is nonergodic: there are no direct relationships 
between classical test theory based on analysis of BSV and the structure of WSV 
characterizing each individual person in the population. Obviously this state of affairs 
has important consequences for the application of tests in individual counseling (as 
suggested by the quoted remark of Lord & Novick). Insofar as these tests have been 
constructed according to the guidelines of classical test theory, they cannot be 
expected to yield measures in individual assessment of a single person that obey the 
characteristics proclaimed by the theory.  
 To give an example, suppose that the propensity distribution of person P has a 
high mean τP and vanishing variance. Hence an observed score yP of P equals the true 
score τP of P and has reliability equal to one. Suppose also that the reliability across 
persons in the population to which P belongs is not perfect, .80 say. Then P’s true 
score estimate is given by the Kelley estimator (Lord & Novick, 1968, p. 65): est-τP = 
.80yP + (1-.80)μ, where μ is the mean score in the population. Under the stated 
assumption that the true score τP of P is much higher than μ, it follows that est-τP will 
differ from τP, despite our assumption that the observed scores of P have reliability 
equal to one (P’s propensity distribution having vanishing variance). Reasoning along 
similar lines, consider the subset of persons having the same extremely high observed 
score ymax. Part of this subset will consist of persons having propensity distributions 
with large variances, whose observed score is substantially higher than the means of 
their propensity distributions. This part will consist of more persons than the dual part 
consisting of persons having propensity distributions with large variance and 
observed scores substantially lower than the means of their propensity distributions. 
Another part of this subset will be persons having propensity distributions with small 
variances, whose observed score will be close to the means of their propensity 
distributions. Yet the Kelley estimate of the true scores of all persons in this subset is 
the same. On average this would do injustice to the persons whose propensity 
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distributions have small variance (assuming that the test measures a desirable trait). 
This kind of reasoning resembles the explanation of the regression paradox (Lord, 
1963). It shows that the ordering of observed scores may not correspond to the 
ordering of true scores.    
 In closing this section I would like to address the question why Lord & 
Novick do not pursue their original concept of true score. Their answer is the 
following (Lord & Novick, 1968, p. 13): “In mental testing we can perhaps repeat a 
measurement once or twice, but if we attempt further repetitions, the examinee’s 
responses change substantially because of fatigue or practice effects”. This answer is 
noteworthy for a number of reasons. First, in Chapter 5 of their book Lord & Novick 
consider tests composed of a varying number of items, where each item constitutes a 
measurement. In fact, even an interpretation of true score of a person in terms of the 
average score on a test of infinite length is considered (Lord & Novick, 1968, p, 108). 
This suggest that it is possible in mental testing to repeat a measurement much more 
than once or twice without changing the psychological processes involved. Second, 
measures of mental information processing such as response latencies require 
extended initial practicing before the actual assessment procedures can begin. The 
rationale is that as long as a fixed experimental condition does not yield a stationary 
sequence of outcomes for a person, assessment of the target information process still 
is confounded by extraneous factors. Hence it is at least conceivable that the effects of 
practice in mental testing can signal the initial presence of confounding factors, which 
should be allowed to decay in extended repeated measurements.  
 I think that Lord & Novick are too pessimistic about the prospects of a test 
theory based on WSV. Moreover, their insistence that repeated measurements of the 
same person should yield statistically independent scores is unwarranted. Weakly 
stationary time series of scores are quite appropriate to determine individual 
propensity distributions. This has been exploited in an early paper by Drösler (1978) 
and is common practice in psychophysiological signal analysis. A general 
methodology for individual diagnosis, based on a concept of person as a bundle of 
behavioral processes, has been sketched by de Groot (1954). The reader is referred to 
Molenaar, Huizenga, & Nesselroade (2002) for further elaboration. I do not at all 
share the reservations of Lord & Novick concerning the possibility of a test theory for 
individual diagnosis and prediction. However, their position is derived from the 
premise that there exists a fundamental difference between, on the one hand, a test 
theory based on BSV and tailored to selection and, on the other hand, a test theory 
based on WSV and tailored to individual diagnosis, counseling and prediction. I fully 
endorse this latter premise.  
 

3.4 Heterogeneity in analysis of BSV 
 

In the previous section we encountered heterogeneity (of individual propensity 
distributions and associated Lord & Novick processes) as a source of nonergodicity. 
Presently, the issue of heterogeneity will be considered in the more general context of 
factor analysis of BSV and WSV. It will be shown that factor analysis is surprisingly 
insensitive to the presence of substantial heterogeneity between persons. A proof of 
this insensitivity for the standard factor model will be sketched. I also will give some 
reasons why one could expect heterogeneity to be ubiquitous in natural populations.  
 Consider the following heterogeneous standard 1-factor model (of BSV): 
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(3.5)  yi = λiηi + εi, i=1,2,... 
 
where λi is a p-dimensional vector of factor loadings for person i, ηi is a univariate 
latent factor, ηi ∼ℵ(0, φi), εi is p-variate Gaussian measurement error, ε(t) ∼ℵ(0, Θi). 
It is noted that all parameter matrices in the expression for the covariance matrix 
associated with (3.5) are person-specific: 
 
(3.6)  Σi = λiφiλi' + Θi , i=1,2,… 
 
To ease the presentation, suppose that only the vector of factor loadings λi is person-
specific, while φi  = φ  and Θi = Θ, i=1,2,… Note that yi is taken to be centered, for 
convenience only: E[yi] = 0. Then it follows from a theorem in Kelderman & 
Molenaar (2001) that in an analysis of BSV, (3.6) is indistinguishable from the 
standard homogeneous factor model:  
 
(3.7)  Σ = λϕλ' + Θ , i=1,2, … 
 
if the elements of λi in (3.6) are independently normally distributed. That is, if λi 
∼ℵ(λ, diag-Δ), where diag-Δ denotes the diagonal (p,p)-dimensional covariance 
matrix of λi.  
 The theorem in Kelderman & Molenaar (2001) is slightly more general. It 
pertains to a 1-factor model including a person-specific mean vector and person-
specific measurement error variances. These additional person-specific parameters 
can accommodate person-specific propensity distributions in classical test theory (cf. 
Lord & Novick, 1968, p. 535, eq. 24.3.2). Still the theorem does not cover multi-
factor models (in which q > 1) and longitudinal factor models. I expect, however, that 
the theorem can be generalized to cover these cases as well (the proof given in 
Kelderman & Molenaar, 2001, is a straightforward exercise in the derivation of raw 
fourth-order moments).  
 It may come as a surprise that the standard 1-factor model (3.7) will fit data 
generated by the heterogeneous factor model (3.5)-(3.6). Indeed, it is a basic 
assumption of standard factor analysis that factor loadings are fixed in the population 
(invariant over persons). Wholesale violation of this assumption might be expected to 
lead to misfit of the postulated model. Yet this is not what happens under the 
conditions of the theorem in Kelderman & Molenaar (2001). And, to reiterate, I 
expect that under similar conditions it can be proved that standard multifactor models 
and longitudinal factor models also will fit data generated by their heterogeneous 
counterparts. The latter expectation has been corroborated in simulation studies 
reported in Molenaar (1997, 1999). In reality the situation may be even more extreme: 
data simulated according to person-specific qi-factor models, i.e., heterogeneous 
factor models in which the number qi of latent factors also is person-specific, still can 
result in acceptably fitting standard q-factor models in which q is small, even if the 
random variation of, e.g., factor loadings is correlated (nondiagonal Δ). The general 
picture emerging from these results (and similar ones obtained in related studies; cf. 
Hamaker, Dolan, & Molenaar, 2002) is that is appears to be very hard to detect the 
presence of person-specific heterogeneity in standard factor analysis of BSV.  
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 Returning to the heterogeneous 1-factor model defined by (3.6), suppose that 
the randomly varying factor loadings in λi are correlated: λi ∼ℵ(λ, Δ), where Δ is a 
full (p,p)-dimensional covariance matrix. It is proven by Kelderman & Molenaar 
(2001) that in this case the models (3.6) and (3.7) are no longer indistinguishable in an 
analysis of BSV. This result, however, does not imply that some standard 1-factor 
model will not yield an acceptable fit to data generated by a heterogeneous factor 
model with correlated factor loadings. It only implies that the estimated factor 
loadings thus obtained will not converge to the mean of the random loadings in (3.6). 
In applications to real data, where the true mechanism of data generation is unknown, 
this implication does not bring much comfort.  
 It is noted that the law λi ∼ℵ(λ, diag-Δ) allows for arbitrary large variances of 
the random factor loadings. Hence it may occur that the estimated factor loadings in 
the standard model (3.7) are all positive, while many of these loadings are vanishing 
or negative for individual persons. Obviously this will affect the estimation of 
individual factor scores, as well as the quality of individual assessments based on 
model (3.7). I fear that there is only one general remedy against this case of ACNE, 
namely the application of single-subject factor analysis of WSV (Molenaar, 1985). 
Only in this way sufficiently homogeneous subsets of subjects can be detected in 
which application of (3.7) is warranted (Nesselroade & Molenaar, 1999). Even then, 
weak stationarity is required to use the results of application of (3.7) in such 
homogeneous subsets of persons for valid generalization to individual diagnosis and 
prediction. 
 Although it does not belong to the main theme of this book, I would like to 
take this opportunity to consider some possible sources of the kinds of heterogeneity 
as discussed in this section (readers not interested in this issue can skip to the next 
chapter without harm). Are there reasons to expect the presence of substantial 
heterogeneity with respect to, for instance, the loadings of a factor model of mental 
test scores? I think there are. Consider the following scenario. Associated with the 
production of mental test scores is neural activity (the premise of brain imaging and 
cognitive neuroscience). This neural activity itself takes place in neural networks in 
the brain, the architecture of which has emerged during embryogenesis, followed by 
subsequent changes during adaptation to environmental influences. There exist strong 
converging evidence, both of empirical and theoretical nature, showing that the 
genesis and adaptation of neural networks is controlled by self-organizing growth 
processes (so-called nonlinear epigenesis; cf. Molenaar, Boomsma, & Dolan, 1993; 
Molenaar & Raijmakers, 1999). It is an inherent characteristic of self-organizing 
epigenetical processes that they generate endogenous variation in their outcomes; 
variation that is irreducible to (independent of) the effects of genetical and 
environmental factors (cf. Molenaar, 1986). Hence neural networks emerging during 
embryogenesis and changing later during adaptation are characterized by irreducible 
structural variation. For instance, Edelman (1987) shows that the difference between 
neural connections in the left side and right side of one's brainstem are as large as the 
difference between the right sides of the brainstem of different subjects. 
 Given that developmental and learning processes generate endogenous 
structural variation at the neural level, and given that the production of mental test 
scores is associated with (supervenes on) the activity of neural networks, one can 
construct a plausible scenario according to which heterogeneity of the extent and kind 
as considered above can be expected to exist in a population of persons. The 
assumption that this heterogeneity at the level of neural architecture manifests itself 
in, for instance, heterogeneous factor loadings can be defended by an appeal to 
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standard (engineering) interpretations of the components of state-space models (e.g., 
Padulo & Arbib, 1974). Of course, the factor model is a special instance of the state-
space model.  
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4. Closing remarks 
 
 Before trying to take stock of what has been accomplished in the foregoing 
chapters, I will first discuss some points that require a kind of finishing touch. The 
first one of these points concerns the relationship between the regression estimator for 
factor scores and the Kalman filter. It was shown in chapter 1 that for cross-sectional 
factor models these are the same, but this equality does not simply carry over to 
longitudinal factor models. In section 4.1 it is explained that the regression estimator 
for longitudinal factor scores is the same as the Kalman smoother, not the Kalman 
filter. Another point is more of a definitional nature: in section 4.2 I introduce a 
pragmatic distinction between state-space models and state-space representations. 
This will enable us to address some persistent misunderstandings about the 
relationship between state-space models and dynamic factor models. Then, in the final 
section 4.3, I will summarize the main results of this book and take the opportunity to 
speculate a little bit about its possible consequences.  
 

4.1 The Kalman smoother for longitudinal factor models 
 
 The discussion in chapter 1 concerning the relationship between the regression 
estimator of factor scores and the Kalman filter only pertains to cross-sectional factor 
models. This relationship does not carry over straightforwardly to longitudinal factor 
models. The reason for this is quite simple. The Kalman filter is an estimator of the 
schematic form: estimate(t) = f[observation(t) | estimate(t-1)]. Now consider a 
longitudinal factor model defined at T time points. The Kalman filter estimates of the 
factor scores at the first time point t=1 are only based on the observations obtained at 
t=1: ηi(1 | 1) = f[yi(1) | ηi(0 | 0)], where ηi(0 | 0) denotes (lack of) a priori information 
about initial values. The Kalman filter estimates of the factor scores at the second 
time point t=2 are only based on the observations obtained at t=1 and t=2: ηi(2 | 2) = 
f[yi(2) | ηi(1 | 1)]. And so forth for t=3,...,T. Only the Kalman filter estimate of the 
factor scores at t=T is based on the observations obtained at all time points. In 
contrast, the regression estimator for longitudinal factor scores is based on the 
supervector yi = [yi(1)’, ..., yi(T)’]’ and therefore makes use of the observations 
obtained at all time points in estimating the factor scores at each time point. Clearly 
the statistical performance of this estimator will be better than the performance of its 
Kalman filter alternative.  
 The Kalman filter is a recursive estimator that can be applied in real-time 
because each new observation is processed as soon as it arrives. In applications to 
longitudinal data, however, all observations are (considered to be) given before the 
analysis starts and therefore constitute, what Koopmans (1974) calls, historic time 
series. For such historic time series it makes sense to apply the Kalman filter twice: 
the usual forward recursion from the initial to the final time point followed by a 
backward recursion from the final to the initial time point. This is accomplished by 
means of the fixed interval Kalman smoother. The fixed interval Kalman smoother is 
used “... when the time interval T of the measurements (i.e., the data span) is fixed, 
and we seek optimal estimates at some, or perhaps all, interior points. This is the 
typical problem encountered when processing noisy measurement data off-line” 
(Brown, 1983, p. 275).  
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 Application of the fixed interval Kalman smoother yields recursive estimates 
of longitudinal factor scores at each time point t that are based on the observations at 
all time points: ηi(t | T), t=1,2,...,T. Dolan & Molenaar (1991) provide a formal proof 
and evidence from a simulation study, showing that the fixed interval Kalman 
smoother is identical to the regression estimator for longitudinal factor scores.  
 It is noted that the need to replace the Kalman filter by the fixed interval 
Kalman smoother only arises if one wants to obtain regression estimates of 
longitudinal factor scores in a recursive way, where the (forward and backward) 
recursions are defined over adjacent time points. In contrast, if all observations are 
stacked in the supervector yi = [yi(1)’, ..., yi(T)’]’ then the resulting factor model for yi 
constitutes a special instance of a confirmatory oblique factor model. Factor score 
estimation according to the regression method in the latter confirmatory oblique factor 
model can proceed by means of the Kalman filter in the way as described in chapter 1. 
Hence we obtain another equivalence: the recursive fixed interval Kalman smoother 
for longitudinal factor score estimation, ηi(t | T), t=1,2,...,T,  equals the Kalman filter 
estimate η

i
 given by (1.7) for factor score estimation in the corresponding 

confirmatory oblique factor model for the supervector yi: ηi
 = [ηi(1 | T)’, ..., ηi(T | 

T)’]’. I do not know whether this equivalence has been noticed before in the published 
literature. 
 

4.2 State-space models and representations 
 
 In this section a distinction is made between state-space models and state-
space representations. This distinction is not at all fundamental, but it will serve as a 
heuristic device to discuss some intricacies that have been left implicit in the previous 
chapters. Possible intricacies that have to do with the use of the concept of state-space 
model in those chapters.  
 Until now we have mainly focused on the commonalties between longitudinal 
factor models (including limiting cases of cross-sectional factor models) and state-
space models. The standard longitudinal factor model has a particular form which can 
schematically represented as:   
 
  yi,t = Λtηi,t + εi,t  i=1,2....; t=1,2,...,T 
*) 
  ηi,t+1 = Βt+1,tηi,t + ζi,t  ηi,1 = ζi,1
 
It is noted that, according to *), at each time point t the p-variate observation yi,t is 
only directly influenced by the q-variate longitudinal factor score ηi,t. Hence 
longitudinal factor scores directly affect only contemporaneous observations; there 
are no direct relationships between yi,t and antecedent longitudinal factor scores ηi,s, s 
< t. There are only indirect relationships with antecedent longitudinal factor scores 
represented by the latent q-variate AR(1): ηi,s+1 = Βs+1,sηi,s + ζi,s  ηi,1 = ζi,1, s < t.  
 The state-space models in this book have been represented by a form similar 
to *):  
 
  y(t) = Λ(t)η(t) + ε(t)  t=0,±1,... 
**) 
  η(t+1) = Β(t)η(t) + ζ(t) 
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Like in *), there are in **) only indirect relationships between y(t) and η(s), s < t, 
which are implied by the latent q-variate AR(1) state process: η(s+1) = Β(s)η(s) + 
ζ(s), s < t. I will refer to **) as a state-space model and contrast it with a state-space 
representation to be described below. 
 Both the standard longitudinal factor model *) and the state-space model **) 
share the same kinds of restrictions.  The restriction that the latent q-variate η-process 
in both models obeys a first-order autoregressive model is not essential: 
generalization to higher-order autoregressions is straightforward (cf., e.g., Shumway 
& Stoffer, 2000, Chapter 4; Durbin & Koopman, 2001, Chapter 3). The restriction 
that the p-variate measurement error process (ε-process) in both models is a white 
noise process also is not essential. This can be replaced by more general p-variate 
NARMA alternatives (cf., e.g., Jazwinsky, 1970, Chapter 7). The same remarks can 
be made with respect to the latent q-variate innovation process (ζ-process) in both 
models: this also can be replaced by more general q-variate NARMA alternatives (cf., 
e.g., Jazwinsky, 1970, Chapter 7). Also, the ε–process and the ζ–process can be 
allowed to be cross-correlated in both models (cf., e.g., Goodwin & Sin, 1984). It is 
noted in passing that, although all these variants have been elaborated and applied in 
state-space modeling, they have not all been considered in longitudinal factor 
analysis. Hence there is ample room for innovative work here.  
 The restriction that I want to concentrate upon in distinguishing between state-
space models and state-space representations concerns the lack of delayed direct 
influences of the η–process on observations in *) and **). Incorporation of such 
delayed direct influences in **) can be expressed according to the following 
schematic representation:  
 
  y(t) = ∑uΛt(u)η(t-u) + ε(t)  t=0,±1,...; u ≥ 0 
§) 
  η(t+1) = Βtη(t) + ζ(t) 
 
where at each time point t Λt(u), u=0,1,..., denotes a sequence of (p,q)-dimensional 
matrices of loadings expressing the delayed direct influences of previous realizations 
η(t-u), u=0,1,…, on y(t). A similar generalization can be given for the longitudinal 
factor model *), but I will not consider this further.  
 The model given by §) is no longer a state-space model. It is called a dynamic 
factor model and for the weakly stationary case in which Λt(u) = Λ(u), u=0,1,..., it is 
discussed in Brillinger (1975, Chapter 9), Molenaar (1985; 1987) and Molenaar, de 
Gooijer & Schmitz (1992). The delayed direct effects of the η–process on 
observations in §) can accommodate differential lead-lag patterns (or phase 
relationships) between the elements of y(t). This will be illustrated by the wave model 
for electrocortical potential fields developed by Nunez (1981; 1995; see also 
Molenaar, 1993). Suppose that the elements yj(t), j=1,...,p, of y(t) consist of 
registrations of the time-varying electrocortical potential field at different locations lj, 
j=1,...,p on the head. Suppose also that η(t) denotes the activity of neural sources 
modulating this potential field through long-range cortico-cortical connections. Then 
the activity of a neural source, i.e., an element ηk(t) of η(t) at a particular location Lk 
in the brain, will manifest itself later in registrations (elements of y(t)) at locations at 
larger distances from Lk. Stated otherwise, delays in the modulating effect of neural 
source ηk(t), k=1,...,q, on potential field registration yj(t), j=1,...,p, are distance-
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dependent, i.e., a function of |Lk – lj| . Moreover, the delayed modulating effect due to 
the activity of a neural source at time t may persist during a finite interval after onset, 
t’ > t, and thus give rise to aftereffects that overlap with the newly arriving 
modulating effects induced by the activity of this source at subsequent time points t’. 
Hence at each time point t and location lj, the observed potential field yj(t) consists of 
a weighted superposition of contemporaneous and delayed effects of latent sources, 
transmitted with finite velocity along a network of long-range cortico-cortical 
connections. The biological properties of this connective network give rise to 
aftereffects, i.e., even if the activity of a neural source would be reduced to a single 
spike at a fixed time ts, it still would give rise to delayed effects during a finite time 
interval ts+u, u ≥ 0. This results in intricate patterns of phase relationships between 
the elements of y(t) which are captured by the dynamic factor model §).  
 The state-space model **) is a special instance of a dynamic factor model §) 
in which the lag u only takes the value u=0. This implies in the context of our 
example that activity of a neural source ηk(t) has instantaneous effects at all 
registration points across the head (no distance-dependent delays are possible). Hence 
it is obvious that the dynamic factor model includes the state-space model as a special 
case. Yet it has sometimes been conjectured that the dynamic factor model is a special 
instance of the state-space model (e.g., Immink, 1986). Although the latter conjecture 
is incorrect, there is a sense in which it could be saved. If in §) the sum is over a finite 
set of values for the lag-index u, it can be shown that the resulting dynamic factor 
model can be rewritten into state-space form (Molenaar, 1985, Appendix). One then 
obtains a state-space representation of this dynamic factor model. I prefer to call this a 
state-space representation, because the state vector now is a supervector covering the 
latent η-process at a range of time points. Accordingly, a dynamic q-factor model has 
a state-space representation in which the dimension of the state vector is a multiple of 
q, depending upon the (presumably finite) range of the lag-index u in §). In contrast, 
the state-space model **) in which the state vector is q-dimensional constitutes the 
limiting form of the dynamic q-factor model in which the range of the lag-index u in 
§) only consists of the value u=0. Hence the latter (dynamic factor and state-space) 
models both involve latent processes of the same dimension q.  
 To reiterate, the distinction between state-space models and representations is 
not at all fundamental. It only serves to bring some order in the manifold collection of 
state-space forms. Almost any linear time series model (including the NARMA 
models discussed in Chapter 2) can be rewritten into state-space form. For practical 
purposes it therefore is worthwhile to introduce some classification scheme for state-
space forms. In fact, this also would be worthwhile to consider for the several 
possible variants of longitudinal factor models mentioned above.  
 

4.3 General discussion 
 
 The major part of this book has been devoted to an introduction of new 
perspectives on structural equation modeling. These perspectives are inspired by 
dynamical systems theory, in particular realization theory (chapter 2) and ergodic 
theory (chapter 3). I have tried to show how each perspective yields new and 
interesting results, although it has to be admitted that the results obtained thus far are 
preliminary in most respects. Hence one should consider the discussion in chapters 2 
and 3 mainly as invitations to apply realization theory and ergodic theory in the 
context of structural equation modeling.  
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 Realization theory for linear stochastic systems involves the application of 
sophisticated linear algebraic ideas and techniques (cf. Caines, chapter 4), often 
leading to constructive algorithms to compute equivalent representations. Given the 
formal equivalence between state-space models and structural equation models, these 
algorithms would seem to have potentially useful applications in the latter realm too. 
For instance, the special issue on linear systems and control of Linear Algebra and its 
Applications (1989) contains a wealth of information with possibly interesting 
applications to structural equation modeling.  
 The possibility to remove latent variables from structural equation models by 
means of the invertible (one-to-one) transformations described in chapter 2 needs to 
be worked out in a much more general fashion. The transformations themselves need 
to be casted into a transparent linear algebraic format that covers both causal and 
noncausal NARMA representations. Such a general abstract format is essential in 
order to accommodate the Houdini transformation to complex structural equation 
models of the multi-indicator multi-wave varieties. Noncausal NARMA 
representations would seem to be more natural for cross-sectional latent variable 
models. I presented a possible interpretation of NARMA equivalents of latent variable 
models in terms of nearest-neighbor interaction between the elements of the manifest 
p-variate vector y. Because in a cross-sectional setting the order of the elements of y 
is arbitrary, one actually obtains p! distinct NARMA equivalents, and hence one 
could consider the question whether there exists an optimal ordering in some sense. 
Moreover, there arises the especially challenging question what happens to factor 
indeterminacy (cf. Krijnen, 19**) if a factor model is transformed into a NARMA 
equivalent. Does factor indeterminacy leave behind any trace in the NARMA 
representations concerned? If so, then the only possible locus for indeterminacy in a 
NARMA representations is in the residual terms. This then would cast doubts on our 
usual interpretation of residuals.  
 Although realization theory is basically an algebraic theory, it does have 
interesting consequences for statistical estimation. The commonalties and differences 
between statistical estimation in state-space models and ARMA models are discussed 
in great depth in Hannan & Deistler (1988). Also, within the class of state-space 
models, or within the class of multivariate ARMA models, different possible 
representations (so-called canonical forms) have different consequences for statistical 
estimation. The implications of these theoretical results for estimation in latent 
variable models, in comparison with estimation in their NARMA equivalents, still 
appear to be unexplored.  
 As I have tried to show in chapter 3, ergodic theory has immediate 
consequences for the range of applicability of results obtained with structural equation 
modeling of BSV. The classical ergodicity theorems imply that only under strong 
restrictive stationarity assumptions can one expect that results obtained with structural 
equation modeling of BSV will generalize to WSV. Developmental and learning 
processes do not obey these stationarity assumptions and hence are prime candidates 
of nonergodic processes. It will be evident that this has major implications for 
individual assessment, counseling and prediction. Classical test theory is based on 
analysis of BSV and hence psychological tests constructed according to this theory 
may not be valid for individual assessment of learning and development. I expect that 
the same qualifications can be made with respect to the fruits of item-response theory.  
 In the discussion of classical test theory in chapter 3, the issue of 
heterogeneity in a population of subjects came up. Heterogeneity is not the same as 
nonergodicity, but appears to have similar effects in that it precludes the 
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generalization of results obtained in analyses of BSV to WSV. Although parameters 
in structural equation models of BSV are assumed to be invariant across subjects, it 
turns out that extreme violation of this assumption is hard to detect. As I indicated in 
chapter 3, it can even be proven that under certain circumstances this heterogeneity 
cannot be detected at all in analyses of BSV. It is noted that multilevel models and 
mixture models do not offer a panacea for the kind of heterogeneity under scrutiny. If 
factor loadings in a factor model are randomly varying across subjects, then the 
implied covariance matrix between manifest variables becomes subject-specific. In 
contrast, the covariance between level and shape in a latent growth model is assumed 
to be invariant across subjects. Consequently, this latent growth model is not able to 
accommodate the subject-specific covariances in a factor model with random factor 
loadings. A mixture model is based on the assumption that there exist homogeneous 
subpopulations, where each subpopulation is large in some sense. In contrast, a factor 
model with random factor loadings is akin to a mixture model in which each 
subpopulation consists of a single subject.  
 The problems created by nonergodicity and heterogeneity can only be solved 
by dedicated study of WSV. In psychology such WSV-based approaches are called 
N=1 techniques and are considered to be somewhat inferior to BSV-based 
approaches. Psychology is about the only science where WSV is not considered to be 
a phenomenon worthy of serious study. I will not venture into discussion of the stated 
(and unstated) reasons for this particular attitude. Suffice it to say that the N=1 
paradigm can yield nomothetic theory, i.e., general theory, though the required 
methodology will be different from the popular N=many approach. Fortunately, the 
required methodological and statistical tools are available to seriously start curing the 
chronic psychometric problems caused by ACNE.  
 Ergodic theory itself has become more and more detached from its origins in 
statistical mechanics. Modern ergodic theory is part of the general mathematical 
theory of dynamical systems (Arnold, 1998; Borovkov, 1998; Keller, 1998). 
Statistical mechanics is moving into entirely new directions in which the arbitrary 
large classical ensembles (thermodynamic limit) are replaced by small ensembles of 
interacting particles (e.g., Tsallis, 2002). Some of these developments have already 
entered the social sciences (Helbing, 1995). 
 Realization theory and ergodic theory are not the only viable perspectives on 
structural equation modeling inspired by system theory. Optimal control and 
nonlinear recursive estimation are also promising candidates. The possibility of 
optimal control arises if the manifest variables include a subset of so-called control 
variables that can be manipulated at will. It then is possible to compute the values of 
the control variables so that a performance criterion is optimized. Whittle (1990) 
presents an excellent overview of optimal control and its dual relationship with 
estimation. Molenaar (1987) presents an empirical application to therapeutic process 
control. To the best of my knowledge, Press (1972) is the only source where optimal 
control is considered in the context of analysis of BSV.  
 Nonlinear recursive estimation involves the extension of Kalman filtering 
techniques to nonlinear dynamical systems (e.g., Sage & Melsa, 1971, chapter 9). To 
illustrate the use of nonlinear recursive estimation in structural equation modeling, 
let’s go back to chapter 1 where the relationship was considered between the 
regression estimator of factor scores in a cross-sectional model and the Kalman filter. 
Both the regression estimator and the Kalman filter are derived under the assumption 
that the parameter matrices in a factor model are known. But usually only estimates of 
these parameters are available. To investigate how the use of uncertain parameter 
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estimates in the regression estimator (Kalman filter) affects its performance, the 
following approach can be used. Add the uncertain parameter estimates to the state 
vector, which yields an extended state vector composed of the original factors and the 
parameter estimates. Note that the state-space model thus extended becomes 
nonlinear, even if the initial model is linear. Apply nonlinear recursive estimation to 
the state-space model thus extended to obtain factor score (state) estimates. 
Preliminary work of mine along these lines shows that the regression estimator 
(Kalman filter) appears to be quite robust against parameter uncertainty. Nonlinear 
recursive filtering techniques prove to be quite versatile for addressing this and 
similar questions.  
 Structural equation modeling is one of the most challenging and innovative 
fields in the methodology of social science. I hope that this book provides a stimulus 
to incorporate system theoretical perspectives to the ongoing theoretical study of 
structural equation models. 
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