Publication Date:
Author(s): Sy-Miin Chow, Jason J. Bendezú, Pamela M. Cole, Nilam Ram
Publisher: Psychology Press Ltd
Publication Type: Journal Article
Journal Title: Multivariate Behavioral Research
Volume: 51
Issue: 2
Page Range: 154-184
Abstract:

Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation.