Publication Date:
Author(s): Zita Oravecz, Chelsea Muth
Publication Type: Academic Journal Article
Journal Title: Psychonomic Bulletin and Review
Volume: 25
Issue: 1
Page Range: 235-255

Growth curve modeling is a popular methodological tool due to its flexibility in simultaneously analyzing both within-person effects (e.g., assessing change over time for one person) and between-person effects (e.g., comparing differences in the change trajectories across people). This paper is a practical exposure to fitting growth curve models in the hierarchical Bayesian framework. First the mathematical formulation of growth curve models is provided. Then we give step-by-step guidelines on how to fit these models in the hierarchical Bayesian framework with corresponding computer scripts (JAGS and R). To illustrate the Bayesian GCM approach, we analyze a data set from a longitudinal study of marital relationship quality. We provide our computer code and example data set so that the reader can have hands-on experience fitting the growth curve model.